Control Design for a Marine Hydrokinetic Cycloturbine Vehicle

Research output: Contribution to journalArticlepeer-review

Abstract

Marine Hydrokinetic (MHK) cycloturbines generate sustainable power by exploiting tidal currents. By powering the turbines and using pitching foils for control, a vehicle comprised of MHK cycloturbines also has the ability to station keep and maneuver. The vehicle consists of four counter-rotating cycloturbines, with hydrofoils oriented perpendicular to the flow in a paddlewheel configuration. Lift and drag generated from these foils sum together to produce thrust. An experimentally tuned simulation model that solves the six-degrees-of-freedom rigid body equations of motion for the MHK vehicle subject to hydrodynamic, hydrostatic, and propulsive forces is used to aid the design of vehicle controllers. Global feedback controllers are initially designed by applying classical control methods to an approximate linear model of the system dynamics. A higher performing nonlinear controller is designed using the nonlinear dynamic inversion (NDI) method. NDI accounts for the nonlinearities of the MHK system and therefore is suitable for a wide range of operating conditions. The response of the classical and NDI controllers to speed, depth, roll, pitch, and yaw commands are evaluated and compared in simulation. The classical controller outperforms the NDI controller for small amplitude maneuvers, although the degradation with NDI is minor. However, in the nonlinear operating regime the NDI controller outperforms the classical controller and the classical controller exhibits instability.

Original languageEnglish (US)
Article number011004
JournalJournal of Dynamic Systems, Measurement and Control, Transactions of the ASME
Volume145
Issue number1
DOIs
StatePublished - Jan 2023

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Information Systems
  • Instrumentation
  • Mechanical Engineering
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Control Design for a Marine Hydrokinetic Cycloturbine Vehicle'. Together they form a unique fingerprint.

Cite this