TY - JOUR
T1 - Control of Molecular Bonding Strength on Metal Catalysts with Organic Monolayers for CO2 Reduction
AU - Zhang, Jing
AU - Deo, Shyam
AU - Janik, Michael J.
AU - Will Medlin, J.
N1 - Publisher Copyright:
Copyright © 2020 American Chemical Society.
PY - 2020/3/18
Y1 - 2020/3/18
N2 - The development of separate levers for controlling the bonding strength of different reactive species on catalyst surfaces is challenging but essential for the design of highly active and selective catalysts. For example, during CO2 reduction, production of CO often requires balancing a trade-off between the adsorption strength of the reactant and product states: weak binding of CO is desirable from a selectivity perspective, but weak binding of CO2 leads to low activity. Here, we demonstrate a new method of controlling both CO2 adsorption and CO desorption over supported metal catalysts by employing a single self-assembly step where organic monolayer films were deposited on the catalyst support. Binding of phosphonic acid monolayers on supported Pt and Pd catalysts weakened CO binding via a through-support effect. The weakened CO adsorption was generally accompanied by decreased adsorption and reactivity of CO2. However, by the incorporation of basic amine functions at controlled positions in the modifying film, strong CO2 adsorption and hydrogenation reactivity could be restored. Thus, both through-surface and through-space interactions could be manipulated by design of the organic modifiers. After surface modification, the catalysts exhibited significantly improved selectivity (up to 99% at conversions near 50%) and activity toward CO production. Moreover, the rate of deactivation was notably reduced due to prevention of CO poisoning.
AB - The development of separate levers for controlling the bonding strength of different reactive species on catalyst surfaces is challenging but essential for the design of highly active and selective catalysts. For example, during CO2 reduction, production of CO often requires balancing a trade-off between the adsorption strength of the reactant and product states: weak binding of CO is desirable from a selectivity perspective, but weak binding of CO2 leads to low activity. Here, we demonstrate a new method of controlling both CO2 adsorption and CO desorption over supported metal catalysts by employing a single self-assembly step where organic monolayer films were deposited on the catalyst support. Binding of phosphonic acid monolayers on supported Pt and Pd catalysts weakened CO binding via a through-support effect. The weakened CO adsorption was generally accompanied by decreased adsorption and reactivity of CO2. However, by the incorporation of basic amine functions at controlled positions in the modifying film, strong CO2 adsorption and hydrogenation reactivity could be restored. Thus, both through-surface and through-space interactions could be manipulated by design of the organic modifiers. After surface modification, the catalysts exhibited significantly improved selectivity (up to 99% at conversions near 50%) and activity toward CO production. Moreover, the rate of deactivation was notably reduced due to prevention of CO poisoning.
UR - http://www.scopus.com/inward/record.url?scp=85082099546&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85082099546&partnerID=8YFLogxK
U2 - 10.1021/jacs.9b12980
DO - 10.1021/jacs.9b12980
M3 - Article
C2 - 32083859
AN - SCOPUS:85082099546
SN - 0002-7863
VL - 142
SP - 5184
EP - 5193
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 11
ER -