TY - JOUR
T1 - Control of nanomorphology in all-polymer solar cells via assembling nanoaggregation in a mixed solution
AU - Yu, Wei
AU - Yang, Dong
AU - Zhu, Xiaoguang
AU - Wang, Xiuli
AU - Tu, Guoli
AU - Fan, Dayong
AU - Zhang, Jian
AU - Li, Can
PY - 2014/2/26
Y1 - 2014/2/26
N2 - The formation of interconnected phase-separated domains on sub-20 nm length scale is a key requirement for all-polymer solar cells (all-PSCs) with high efficiency. Herein, we report the application of crystalline poly(3-hexylthiophene) (P3HT) nanowires via an O-dichlorobenzene/hexane mixed solution blended with poly{(9,9-dioctylfluorenyl-2,7-diyl)-alt-[4,7-bis(3- hexylthiophen-5-yl)-2,1,3-benzothiadiazole]-2′,2″-diyl} (F8TBT) for the first time. The nanomorphology of P3HT:F8TBT all-PSCs can be controlled by P3HT nanowires. The improved film morphology leads to enhanced light absorption, exciton dissociation, and charge transport in all-PSCs, as confirmed by ultraviolet-visible absorption spectra, X-ray diffraction, transmission electron microscopy, atomic force microscopy, and time-resolved photoluminescence spectra. The P3HT nanowire:F8TBT all-PSCs could achieve a power conversion efficiency of 1.87% and a Voc of 1.35 V, both of which are the highest values for P3HT:F8TBT all-PSCs. This work demonstrates that the semiconductor nanowires fabricated by the mixed solvents method is an efficient solution process approach to controlling the nanomorphology of all-PSCs.
AB - The formation of interconnected phase-separated domains on sub-20 nm length scale is a key requirement for all-polymer solar cells (all-PSCs) with high efficiency. Herein, we report the application of crystalline poly(3-hexylthiophene) (P3HT) nanowires via an O-dichlorobenzene/hexane mixed solution blended with poly{(9,9-dioctylfluorenyl-2,7-diyl)-alt-[4,7-bis(3- hexylthiophen-5-yl)-2,1,3-benzothiadiazole]-2′,2″-diyl} (F8TBT) for the first time. The nanomorphology of P3HT:F8TBT all-PSCs can be controlled by P3HT nanowires. The improved film morphology leads to enhanced light absorption, exciton dissociation, and charge transport in all-PSCs, as confirmed by ultraviolet-visible absorption spectra, X-ray diffraction, transmission electron microscopy, atomic force microscopy, and time-resolved photoluminescence spectra. The P3HT nanowire:F8TBT all-PSCs could achieve a power conversion efficiency of 1.87% and a Voc of 1.35 V, both of which are the highest values for P3HT:F8TBT all-PSCs. This work demonstrates that the semiconductor nanowires fabricated by the mixed solvents method is an efficient solution process approach to controlling the nanomorphology of all-PSCs.
UR - http://www.scopus.com/inward/record.url?scp=84896893686&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84896893686&partnerID=8YFLogxK
U2 - 10.1021/am404483g
DO - 10.1021/am404483g
M3 - Article
AN - SCOPUS:84896893686
SN - 1944-8244
VL - 6
SP - 2350
EP - 2355
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 4
ER -