TY - JOUR
T1 - Control of the ability of profilin to bind and facilitate nucleotide exchange from G-actin
AU - Wen, Kuo Kuang
AU - McKane, Melissa
AU - Houtman, Jon C.D.
AU - Rubenstein, Peter A.
PY - 2008/4/4
Y1 - 2008/4/4
N2 - A major factor in profilin regulation of actin cytoskeletal dynamics is its facilitation of G-actin nucleotide exchange. However, the mechanism of this facilitation is unknown. We studied the interaction of yeast (YPF) and human profilin 1 (HPF1) with yeast and mammalian skeletal muscle actins. Homologous pairs (YPF and yeast actin, HPF1 and muscle actin) bound more tightly to one another than heterologous pairs. However, with saturating profilin, HPF1 caused a faster etheno-ATP exchange with both yeast and muscle actins than did YPF. Based on the -fold change in ATP exchange rate/Kd, however, the homologous pairs are more efficient than the heterologous pairs. Thus, strength of binding of profilin to actin and nucleotide exchange rate are not tightly coupled. Actin/HPF interactions were entropically driven, whereas YPF interactions were enthalpically driven. Hybrid yeast actins containing subdomain 1 (sub1) or subdomain 1 and 2 (sub12) muscle actin residues bound more weakly to YPF than did yeast actin (Kd = 2 μM versus 0.6 μM). These hybrids bound even more weakly to HPF than did yeast actin (Kd = 5 μM versus 3.2 μM). sub1/YPF interactions were entropically driven, whereas the sub12/YPF binding was enthalpically driven. Compared with WT yeast actin, YPF binding to sub1 occurred with a 5 times faster koff and a 2 times faster kon. sub12 bound with a 3 times faster koff and a 1.5 times slower kon. Profilin controls the energetics of its interaction with nonhybrid actin, but interactions between actin subdomains 1 and 2 affect the topography of the profilin binding site.
AB - A major factor in profilin regulation of actin cytoskeletal dynamics is its facilitation of G-actin nucleotide exchange. However, the mechanism of this facilitation is unknown. We studied the interaction of yeast (YPF) and human profilin 1 (HPF1) with yeast and mammalian skeletal muscle actins. Homologous pairs (YPF and yeast actin, HPF1 and muscle actin) bound more tightly to one another than heterologous pairs. However, with saturating profilin, HPF1 caused a faster etheno-ATP exchange with both yeast and muscle actins than did YPF. Based on the -fold change in ATP exchange rate/Kd, however, the homologous pairs are more efficient than the heterologous pairs. Thus, strength of binding of profilin to actin and nucleotide exchange rate are not tightly coupled. Actin/HPF interactions were entropically driven, whereas YPF interactions were enthalpically driven. Hybrid yeast actins containing subdomain 1 (sub1) or subdomain 1 and 2 (sub12) muscle actin residues bound more weakly to YPF than did yeast actin (Kd = 2 μM versus 0.6 μM). These hybrids bound even more weakly to HPF than did yeast actin (Kd = 5 μM versus 3.2 μM). sub1/YPF interactions were entropically driven, whereas the sub12/YPF binding was enthalpically driven. Compared with WT yeast actin, YPF binding to sub1 occurred with a 5 times faster koff and a 2 times faster kon. sub12 bound with a 3 times faster koff and a 1.5 times slower kon. Profilin controls the energetics of its interaction with nonhybrid actin, but interactions between actin subdomains 1 and 2 affect the topography of the profilin binding site.
UR - http://www.scopus.com/inward/record.url?scp=44049084957&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=44049084957&partnerID=8YFLogxK
U2 - 10.1074/jbc.M709806200
DO - 10.1074/jbc.M709806200
M3 - Article
C2 - 18223293
AN - SCOPUS:44049084957
SN - 0021-9258
VL - 283
SP - 9444
EP - 9453
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 14
ER -