Controlled Degradation of Polycaprolactone Polymers through Ultrasound Stimulation

Tyus J. Yeingst, Julien H. Arrizabalaga, Ferdousi S. Rawnaque, Lindsay P. Stone, Amar Yeware, Angelica M. Helton, Aman Dhawan, Julianna C. Simon, Daniel J. Hayes

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

This study describes the development of an ultrasound-responsive polymer system that provides on-demand degradation when exposed to high-intensity focused ultrasound (HIFU). Diels-Alder cycloadducts were used to crosslink polycaprolactone (PCL) polymers and underwent a retro Diels-Alder reaction when stimulated with HIFU. Two Diels-Alder polymer compositions were explored to evaluate the link between reverse reaction energy barriers and polymer degradation rates. PCL crosslinked with isosorbide was also used as a non-Diels-Alder-based control polymer. An increase of HIFU exposure time and amplitude correlated with an increase of PCL degradation for Diels-Alder-based polymers. Ultrasound imaging during HIFU allowed for real-time visualization of the on-demand degradation through cavitation-based mechanisms. The temperature surrounding the sample was monitored with a thermocouple during HIFU stimulation; a minimal increase in temperature was observed. PCL polymers were characterized using Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), optical profilometry, and mechanical testing. PCL degradation byproducts were identified by mass spectrometry, and their cytocompatibility was evaluated in vitro. Overall, this study demonstrated that HIFU is an effective image-guided, external stimulus to control the degradation of Diels-Alder-based PCL polymers on-demand.

Original languageEnglish (US)
Pages (from-to)34607-34616
Number of pages10
JournalACS Applied Materials and Interfaces
Volume15
Issue number29
DOIs
StatePublished - Jul 26 2023

All Science Journal Classification (ASJC) codes

  • General Materials Science

Fingerprint

Dive into the research topics of 'Controlled Degradation of Polycaprolactone Polymers through Ultrasound Stimulation'. Together they form a unique fingerprint.

Cite this