TY - GEN
T1 - Conversion of cellulose fermentation end products to hydrogen in microbial electrolysis cells
AU - Lalaurette, Elodie
AU - Logan, Bruce
PY - 2008
Y1 - 2008
N2 - Hydrogen production is becoming increasingly important as a source of fuel for fuel cells. So far, most of the hydrogen produced is derived from fossil fuels. Ecologically clean and renewable methods of producing hydrogen include microbial fermentation and the use microbial electrolysis cells (MECs), also known as bioelectrochemically assisted microbial reactors or BEAMRs. Microbial fermentation using cellulose is possible, however, less than 15% of the organic matter is typically converted to hydrogen with most of the energy still contained in soluble end products such as acetate and other volatile fatty acids. In this project, we are looking at degrading cellulose fermentation end-products (acetate, succinate, formate, lactate, and ethanol) from a specific fermentation end stream to produce hydrogen in single chamber MEC reactors. We are comparing the hydrogen production by mixed cultures to the complete mix of end products, to cultures pre-acclimated to the different substrates.
AB - Hydrogen production is becoming increasingly important as a source of fuel for fuel cells. So far, most of the hydrogen produced is derived from fossil fuels. Ecologically clean and renewable methods of producing hydrogen include microbial fermentation and the use microbial electrolysis cells (MECs), also known as bioelectrochemically assisted microbial reactors or BEAMRs. Microbial fermentation using cellulose is possible, however, less than 15% of the organic matter is typically converted to hydrogen with most of the energy still contained in soluble end products such as acetate and other volatile fatty acids. In this project, we are looking at degrading cellulose fermentation end-products (acetate, succinate, formate, lactate, and ethanol) from a specific fermentation end stream to produce hydrogen in single chamber MEC reactors. We are comparing the hydrogen production by mixed cultures to the complete mix of end products, to cultures pre-acclimated to the different substrates.
UR - http://www.scopus.com/inward/record.url?scp=77955884100&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77955884100&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:77955884100
SN - 9780841269941
T3 - ACS National Meeting Book of Abstracts
BT - American Chemical Society - 236th National Meeting and Exposition, Abstracts of Scientific Papers
T2 - 236th National Meeting and Exposition of the American Chemical Society, ACS 2008
Y2 - 17 August 2008 through 21 August 2008
ER -