Correlating microstructure and superelasticity of directed energy deposition additive manufactured Ni-rich NiTi alloys

Research output: Contribution to journalArticlepeer-review

82 Scopus citations

Abstract

Laser-based directed energy deposition (LDED) additive manufacturing of Ni-rich NiTi shape memory alloys was shown to produce inhomogeneous precipitate morphologies and characteristic grain structures consisting of columnar grains coexisting with equiaxed and subgrain structures. Post-processing solutionizing and aging heat treatments impacted microstructure and martensitic phase transformation (MT) responses underpinning superelastic shape memory responses. A solution treatment of 950 °C for 24 h was found to produce a uniform composition of the B2 austenite parent phase without affecting the coexistence of columnar and equiaxed substructures. Aging the solution treated material brought about a spatially uniform Ni4Ti3 precipitate morphology. Due to the uniform morphology, an underlying austenite-martensite interface motion accompanies the compressive stress-induced MT (SIMT). Reversible interface motion underpinned the compressive superelastic response for the solutionized and aged condition. On the other hand, strain concentrations existed at different spatial locations in the as built condition as well as when the as built material was aged. The stark contrasts in the SIMT exposed precipitate morphology as a controlling factor in tailoring the superelastic response of Ni-rich NiTi SMAs fabricated by LDED.

Original languageEnglish (US)
Pages (from-to)712-722
Number of pages11
JournalJournal of Alloys and Compounds
Volume739
DOIs
StatePublished - Mar 30 2018

All Science Journal Classification (ASJC) codes

  • Mechanics of Materials
  • Mechanical Engineering
  • Metals and Alloys
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Correlating microstructure and superelasticity of directed energy deposition additive manufactured Ni-rich NiTi alloys'. Together they form a unique fingerprint.

Cite this