TY - JOUR
T1 - Correlation between keratometric and refractive astigmatism in pseudophakes
AU - Athukorala, Shavini
AU - Kansara, Neal
AU - Lehman, Erik
AU - Pantanelli, Seth M.
N1 - Publisher Copyright:
© 2021 Athukorala et al.
PY - 2021
Y1 - 2021
N2 - Purpose: To investigate the relationship between measured anterior, posterior, and total keratometric astigmatism and post-operative refractive astigmatism (RA) after cataract surgery. Patients and Methods: This was a retrospective analysis of eyes that consecutively underwent pre-operative measurements of keratometric astigmatism with a swept-source optical coherence tomography (SS-OCT)-based optical biometer and dual-Scheimpflug/Placido disc corneal topographer, cataract surgery with implantation of a monofocal intraocular lens, and post-operative manifest refraction. The difference between post-operative refractive astigmatism and keratometric astigmatism measured using four different ways [Keratometry (K), Simulated Keratometry (SimK), Total Keratometry (TK), and Total Corneal Power (TCP)] was calculated. Results: For all 118 eyes, a smaller mean vector difference between post-operative refractive astigmatism and measured keratometric astigmatism was realized with TK (0.08 @ 151) vs TCP2 (0.30 @ 174; p < 0.0006), as well as with K (0.26 @ 173) vs SimK (0.52 @ 177; p = 0.036). The mean vector difference between post-operative refractive astigmatism and TK astigmatism was 0.31 @ 097, 0.21 @ 163, and 0.69 @ 179 in eyes with against-the rule (ATR), oblique, and with-the-rule (WTR) anterior corneal astigmatism, respectively (p < 0.0006). On the other hand, posterior corneal astigmatism did not significantly change with the orientation of anterior corneal astigmatism [0.10 @ 180 for ATR, 0.22 @ 180 for oblique, and 0.28 @ 180 for WTR (p = 0.58)]. Conclusion: Compared with the other measures of corneal astigmatism, total keratometric astigmatism from the SS-OCT device most closely correlated with post-operative RA. The difference between anterior corneal astigmatism and refractive astigmatism is not completely explained by the contribution from the posterior cornea. Other contributors, such as lens tilt or neuro-adaptation, may be at play.
AB - Purpose: To investigate the relationship between measured anterior, posterior, and total keratometric astigmatism and post-operative refractive astigmatism (RA) after cataract surgery. Patients and Methods: This was a retrospective analysis of eyes that consecutively underwent pre-operative measurements of keratometric astigmatism with a swept-source optical coherence tomography (SS-OCT)-based optical biometer and dual-Scheimpflug/Placido disc corneal topographer, cataract surgery with implantation of a monofocal intraocular lens, and post-operative manifest refraction. The difference between post-operative refractive astigmatism and keratometric astigmatism measured using four different ways [Keratometry (K), Simulated Keratometry (SimK), Total Keratometry (TK), and Total Corneal Power (TCP)] was calculated. Results: For all 118 eyes, a smaller mean vector difference between post-operative refractive astigmatism and measured keratometric astigmatism was realized with TK (0.08 @ 151) vs TCP2 (0.30 @ 174; p < 0.0006), as well as with K (0.26 @ 173) vs SimK (0.52 @ 177; p = 0.036). The mean vector difference between post-operative refractive astigmatism and TK astigmatism was 0.31 @ 097, 0.21 @ 163, and 0.69 @ 179 in eyes with against-the rule (ATR), oblique, and with-the-rule (WTR) anterior corneal astigmatism, respectively (p < 0.0006). On the other hand, posterior corneal astigmatism did not significantly change with the orientation of anterior corneal astigmatism [0.10 @ 180 for ATR, 0.22 @ 180 for oblique, and 0.28 @ 180 for WTR (p = 0.58)]. Conclusion: Compared with the other measures of corneal astigmatism, total keratometric astigmatism from the SS-OCT device most closely correlated with post-operative RA. The difference between anterior corneal astigmatism and refractive astigmatism is not completely explained by the contribution from the posterior cornea. Other contributors, such as lens tilt or neuro-adaptation, may be at play.
UR - http://www.scopus.com/inward/record.url?scp=85116411279&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85116411279&partnerID=8YFLogxK
U2 - 10.2147/OPTH.S334108
DO - 10.2147/OPTH.S334108
M3 - Article
C2 - 34611394
AN - SCOPUS:85116411279
SN - 1177-5467
VL - 15
SP - 3909
EP - 3913
JO - Clinical Ophthalmology
JF - Clinical Ophthalmology
ER -