Abstract
Proteins that show similarity in their equilibrium dynamics can be aligned by identifying regions that undergo similar concerted movements. These movements are computed from protein native structures using coarse-grained elastic network models. We show the existence of common large-scale movements in enzymes selected from the main functional and structural classes. Alignment via dynamics does not require prior detection of sequence or structural correspondence. Indeed, a third of the statistically significant dynamics-based alignments involve enzymes that lack substantial global or local structural similarities. The analysis of specific residue-residue correspondences of these structurally dissimilar enzymes in some cases suggests a functional relationship of the detected common dynamic features. Including dynamics-based criteria in protein alignment thus provides a promising avenue for relating and grouping enzymes in terms of dynamic aspects that often, though not always, assist or accompany biological function.
Original language | English (US) |
---|---|
Pages (from-to) | 918-929 |
Number of pages | 12 |
Journal | Protein Science |
Volume | 17 |
Issue number | 5 |
DOIs | |
State | Published - May 2008 |
All Science Journal Classification (ASJC) codes
- Biochemistry
- Molecular Biology