TY - GEN
T1 - Coupled calculation on fluid structure interaction in plate-type fuel element
AU - Yu, Yiqi
AU - Merzari, Elia
AU - Solberg, Jerome
N1 - Publisher Copyright:
Copyright © 2018 ASME.
PY - 2018
Y1 - 2018
N2 - In nuclear reactors that use plate-type fuel, the fuel plates are thermally managed with coolant flowing through channels between the plates. Depending on the flow rates and sizes of the fluid channels, the hydraulic forces exerted on a plate can be quite large. Currently, there is a worldwide effort to convert research reactors that use highly enriched uranium (HEU) fuel, some of which are plate-type, to low-enriched uranium (LEU). Because of the proposed changes to the fuel structure and thickness, a need exists to characterize the potential for flow-induced deflection of the LEU fuel plates. In this study, as an initial step, calculations of Fluid-Structure Interaction (FSI) for a flat aluminum plate separating two parallel rectangular channels are performed using the commercial code STARCCM+ and the integrated multi-physics code SHARP, developed under the Nuclear Energy Advanced Modeling and Simulation program. SHARP contains the high-fidelity single physics packages Diablo and Nek5000, both highly scalable and extensively validated. In this work, verification studies are performed to assess the results from both STAR-CCM+ and SHARP. The predicted deflections of the plate agree well with each other as well as exhibiting good agreement with simulations performed by the University of Missouri utilizing STAR-CCM+ coupled with the commercial structural mechanics code ABAQUS. The study provides a solid basis for FSI modeling capability for plate- type fuel element with SHARP.
AB - In nuclear reactors that use plate-type fuel, the fuel plates are thermally managed with coolant flowing through channels between the plates. Depending on the flow rates and sizes of the fluid channels, the hydraulic forces exerted on a plate can be quite large. Currently, there is a worldwide effort to convert research reactors that use highly enriched uranium (HEU) fuel, some of which are plate-type, to low-enriched uranium (LEU). Because of the proposed changes to the fuel structure and thickness, a need exists to characterize the potential for flow-induced deflection of the LEU fuel plates. In this study, as an initial step, calculations of Fluid-Structure Interaction (FSI) for a flat aluminum plate separating two parallel rectangular channels are performed using the commercial code STARCCM+ and the integrated multi-physics code SHARP, developed under the Nuclear Energy Advanced Modeling and Simulation program. SHARP contains the high-fidelity single physics packages Diablo and Nek5000, both highly scalable and extensively validated. In this work, verification studies are performed to assess the results from both STAR-CCM+ and SHARP. The predicted deflections of the plate agree well with each other as well as exhibiting good agreement with simulations performed by the University of Missouri utilizing STAR-CCM+ coupled with the commercial structural mechanics code ABAQUS. The study provides a solid basis for FSI modeling capability for plate- type fuel element with SHARP.
UR - http://www.scopus.com/inward/record.url?scp=85056296906&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85056296906&partnerID=8YFLogxK
U2 - 10.1115/ICONE26-82418
DO - 10.1115/ICONE26-82418
M3 - Conference contribution
AN - SCOPUS:85056296906
T3 - International Conference on Nuclear Engineering, Proceedings, ICONE
BT - Computational Fluid Dynamics (CFD); Nuclear Education and Public Acceptance
PB - American Society of Mechanical Engineers (ASME)
T2 - 2018 26th International Conference on Nuclear Engineering, ICONE 2018
Y2 - 22 July 2018 through 26 July 2018
ER -