Abstract
We apply the multitaper frequency domain-singular value decomposition signal detection method to the investigation of coherent patterns of variation in seasonal Northern Hemisphere sea level pressure and conterminous U.S. summer drought during the period 1895-1995. The analysis identifies statistically significant patterns of spatiotemporal variability on interannual and bidecadal timescales indicative of both cold-season and warm-season atmospheric influences on North American drought patterns. The most robust signal found appears to be associated with the influences of the El Niño-Southern Oscillation (ENSO) on North American summer drought. Evidence is also found to support the existence of a roughly bidecadal drought signal tied to warm-season atmospheric circulation changes. The "Dust Bowl" conditions of the 1930s appear to result from a combination of these bidecadal influences on drought conditions that coincide with a decrease in the amplitude of interannual ENSO-related variability during the 1930s.
Original language | English (US) |
---|---|
Pages (from-to) | 1-12 |
Number of pages | 12 |
Journal | Journal of Geophysical Research D: Atmospheres |
Volume | 110 |
Issue number | 3 |
DOIs | |
State | Published - Feb 16 2005 |
All Science Journal Classification (ASJC) codes
- Geophysics
- Forestry
- Oceanography
- Aquatic Science
- Ecology
- Water Science and Technology
- Soil Science
- Geochemistry and Petrology
- Earth-Surface Processes
- Atmospheric Science
- Earth and Planetary Sciences (miscellaneous)
- Space and Planetary Science
- Palaeontology