Crash classification based on manner of collision: a comparative analysis

Asif Mahmud, Agnimitra Sengupta, Vikash V. Gayah

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Traffic crashes vary in the manner in which the collision occurs (collision type), and countermeasures to reduce crashes might vary significantly based on this collision type. The inherent complexity in their mechanism has motivated this study to identify significant factors influencing collision types, with the goal of better countermeasure deployment. The objective of this work is to compare the performances of statistical and machine learning (ML) models in classifying crashes based on collision type, and assess their generalizability and interpretability. Discrete choice models, Bayesian classifiers, tree-based algorithms, and support vector machines are among the data-driven methods considered for comparison. Results indicate that tree-based algorithms perform consistently well and offer a higher interpretability, with out-of-distribution robustness. However, while ML models provide a flexible framework for modeling large data volumes, statistical models provide additional interpretability on the effect of critical variables on crash mechanisms–which is relevant from a safety management standpoint.

Original languageEnglish (US)
Pages (from-to)207-217
Number of pages11
JournalTransportation Letters
Volume16
Issue number3
DOIs
StatePublished - 2024

All Science Journal Classification (ASJC) codes

  • Transportation

Fingerprint

Dive into the research topics of 'Crash classification based on manner of collision: a comparative analysis'. Together they form a unique fingerprint.

Cite this