TY - JOUR
T1 - Cretaceous-Paleogene plant extinction and recovery in Patagonia
AU - Stiles, Elena
AU - Wilf, Peter
AU - Iglesias, Ari
AU - Gandolfo, Maria A.
AU - Cuneo, N. Ruben
N1 - Funding Information:
We thank the technical staff of the Museo Paleontológico Egidio Feruglio (MEF), including P. Puerta, M. Caffa, E. Ruigomez, L. Reiner, and L. Canessa, as well as K. Johnson, R. Scasso, M. Donovan, and many others for their field and laboratory assistance over several expeditions and collections visits. We thank V. Barreda for her assistance reviewing palynological records and M. Patzkowsky and T. Bralower for valuable advice during the development of this project. We thank the editors, K. Boyce and C. Looy, and V. Vajda and three anonymous reviewers for providing constructive feedback that helped us improve this article. Funding was provided to E.S. by Geological Society of America Student Research grant no.12008-18, a Mid-American Paleontological Society (MAPS) Outstanding Research Award, the Penn State Geosciences Charles E. Knopf, Sr., Memorial Scholarship, and two Penn State Geosciences Paul D. Krynine Scholarships, as well as contributions from National Science Foundation grants DEB-15556666/1556136, EAR-1925755/1925552, DEB-0919071/0918932, and DEB-0345750 that benefited all authors. This work partially fulfilled the M.Sc. in Geosciences degree requirements of E.S. at Penn State University.
Publisher Copyright:
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Paleontological Society.
PY - 2020/11/1
Y1 - 2020/11/1
N2 - The Cretaceous-Paleogene (K/Pg) extinction appears to have been geographically heterogeneous for some organismal groups. Southern Hemisphere K/Pg palynological records have shown lower extinction and faster recovery than in the Northern Hemisphere, but no comparable, well-constrained Southern Hemisphere macrofloras spanning this interval had been available. Here, macrofloral turnover patterns are addressed for the first time in the Southern Hemisphere, using more than 3500 dicot leaves from the latest Cretaceous (Maastrichtian) and the earliest Paleocene (Danian) of Argentine Patagonia. A maximum ca. 90% macrofloral extinction and ca. 45% drop in rarefied species richness is estimated across the K/Pg, consistent with substantial species-level extinction and previously observed extirpation of host-specialized leaf mines. However, prior palynological and taxonomic studies indicate low turnover of higher taxa and persistence of general floral composition in the same sections. High species extinction, decreased species richness, and homogeneous Danian macrofloras across time and facies resemble patterns often observed in North America, but there are several notable differences. When compared with boundary-spanning macrofloras at similar absolute paleolatitudes (ca. 50°S or 50°N) from the Williston Basin (WB) in the Dakotas, both Maastrichtian and Danian Patagonian species richnesses are higher, extending a history of elevated South American diversity into the Maastrichtian. Despite high species turnover, our analyses also reveal continuity and expansion of leaf morphospace, including an increase in lobed and toothed species unlike the Danian WB. Thus, both Patagonian and WB K/Pg macrofloras support a significant extinction event, but they may also reflect geographically heterogeneous diversity, extinction, and recovery patterns warranting future study.
AB - The Cretaceous-Paleogene (K/Pg) extinction appears to have been geographically heterogeneous for some organismal groups. Southern Hemisphere K/Pg palynological records have shown lower extinction and faster recovery than in the Northern Hemisphere, but no comparable, well-constrained Southern Hemisphere macrofloras spanning this interval had been available. Here, macrofloral turnover patterns are addressed for the first time in the Southern Hemisphere, using more than 3500 dicot leaves from the latest Cretaceous (Maastrichtian) and the earliest Paleocene (Danian) of Argentine Patagonia. A maximum ca. 90% macrofloral extinction and ca. 45% drop in rarefied species richness is estimated across the K/Pg, consistent with substantial species-level extinction and previously observed extirpation of host-specialized leaf mines. However, prior palynological and taxonomic studies indicate low turnover of higher taxa and persistence of general floral composition in the same sections. High species extinction, decreased species richness, and homogeneous Danian macrofloras across time and facies resemble patterns often observed in North America, but there are several notable differences. When compared with boundary-spanning macrofloras at similar absolute paleolatitudes (ca. 50°S or 50°N) from the Williston Basin (WB) in the Dakotas, both Maastrichtian and Danian Patagonian species richnesses are higher, extending a history of elevated South American diversity into the Maastrichtian. Despite high species turnover, our analyses also reveal continuity and expansion of leaf morphospace, including an increase in lobed and toothed species unlike the Danian WB. Thus, both Patagonian and WB K/Pg macrofloras support a significant extinction event, but they may also reflect geographically heterogeneous diversity, extinction, and recovery patterns warranting future study.
UR - http://www.scopus.com/inward/record.url?scp=85096283211&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85096283211&partnerID=8YFLogxK
U2 - 10.1017/pab.2020.45
DO - 10.1017/pab.2020.45
M3 - Article
AN - SCOPUS:85096283211
SN - 0094-8373
VL - 46
SP - 445
EP - 469
JO - Paleobiology
JF - Paleobiology
IS - 4
ER -