Abstract
Crystal-structure dependent dynamic scaling behavior was investigated for BaTiO3 ceramic. The scaling relation of the form 〈A〉 ∝ fM En0, (where 〈A〉 is the area under the hysteresis loop, while f and E0 represent the frequency and amplitude of the applied electric field signal) was used to determine the values of parameters m and n at various temperatures in the range of -90 °C to 170 °C. The variations in the values of parameters m and n with temperature are explained in terms of the effect of the crystallographic nature of BaTiO 3. The values of parameters m and n obtained for the paraelectric regime suggest that the hysteresis in the P-E (polarization-electric field) loops is related to the dielectric loss rather than any domain-related phenomenon.
Original language | English (US) |
---|---|
Article number | 085022 |
Journal | Smart Materials and Structures |
Volume | 23 |
Issue number | 8 |
DOIs | |
State | Published - Aug 1 2014 |
All Science Journal Classification (ASJC) codes
- Signal Processing
- Civil and Structural Engineering
- Atomic and Molecular Physics, and Optics
- General Materials Science
- Condensed Matter Physics
- Mechanics of Materials
- Electrical and Electronic Engineering