TY - JOUR
T1 - Crystal structure determination of Hägg carbide, χ-Fe 5C 2 by first-principles calculations and Rietveld refinement
AU - Leineweber, Andreas
AU - Shang, Shunli
AU - Liu, Zi Kui
AU - Widenmeyer, Marc
AU - Niewa, Rainer
PY - 2012/4/1
Y1 - 2012/4/1
N2 - X-ray powder-diffraction data recorded using different wave lengths as well as neutron powder diffraction data on Hägg carbide, χ-Fe 5C 2, were evaluated by Rietveld or Pawley refinements, respectively. Likewise, employing different starting models, first-principles calculations using density functional theory (DFT) involving structure optimisation with respect to energy were performed for χ-Fe 5C 2. The results from diffraction and DFT imply a crystal structure having a monoclinic C2/c symmetry with a quite regular (monocapped) trigonal-prismatic coordination of C by Fe atoms. The anisotropy of the microstrain broadening observed in the powder-diffraction patterns agrees with the anisotropy of the reciprocal Young's module obtained from elastic constants calculated by DFT. The anisotropic microstrain broadening can to some degree, be modelled allowing for a triclinic distortion of the metric of χ-Fe 5C 2 (deviation of the lattice angle γ from 90°) involving reflection spitting, which mimics the hkl-dependently broadened reflections. This distortion corresponds to the most compliant shear direction of the monoclinic χ-Fe 5C 2. The anisotropic microstrain broadening results from microstress induced e.g. by anisotropic thermal expansion inducing misfit between the grains, in association with the intrinsic anisotropic elastic compliance of χ-Fe 5C 2. This anisotropic microstrain broadening was likely the origin of previous proposals of triclinic P1 space-group symmetry for the crystal structure of χ-Fe 5C 2, which is rejected in the present work.
AB - X-ray powder-diffraction data recorded using different wave lengths as well as neutron powder diffraction data on Hägg carbide, χ-Fe 5C 2, were evaluated by Rietveld or Pawley refinements, respectively. Likewise, employing different starting models, first-principles calculations using density functional theory (DFT) involving structure optimisation with respect to energy were performed for χ-Fe 5C 2. The results from diffraction and DFT imply a crystal structure having a monoclinic C2/c symmetry with a quite regular (monocapped) trigonal-prismatic coordination of C by Fe atoms. The anisotropy of the microstrain broadening observed in the powder-diffraction patterns agrees with the anisotropy of the reciprocal Young's module obtained from elastic constants calculated by DFT. The anisotropic microstrain broadening can to some degree, be modelled allowing for a triclinic distortion of the metric of χ-Fe 5C 2 (deviation of the lattice angle γ from 90°) involving reflection spitting, which mimics the hkl-dependently broadened reflections. This distortion corresponds to the most compliant shear direction of the monoclinic χ-Fe 5C 2. The anisotropic microstrain broadening results from microstress induced e.g. by anisotropic thermal expansion inducing misfit between the grains, in association with the intrinsic anisotropic elastic compliance of χ-Fe 5C 2. This anisotropic microstrain broadening was likely the origin of previous proposals of triclinic P1 space-group symmetry for the crystal structure of χ-Fe 5C 2, which is rejected in the present work.
UR - http://www.scopus.com/inward/record.url?scp=84865008193&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84865008193&partnerID=8YFLogxK
U2 - 10.1524/zkri.2012.1490
DO - 10.1524/zkri.2012.1490
M3 - Article
AN - SCOPUS:84865008193
SN - 0044-2968
VL - 227
SP - 207
EP - 220
JO - Zeitschrift fur Kristallographie
JF - Zeitschrift fur Kristallographie
IS - 4
ER -