Abstract
One of the cornerstones for topological quantum computations is the Majorana zero mode, which has been intensively searched in fractional quantum Hall systems and topological superconductors. Several recent works suggest that such an exotic mode can also exist in a one-dimensional (1D) interacting double-wire setup even without long-range superconductivity. A notable instability in these proposals comes from interchannel single-particle tunneling that spoils the topological ground state degeneracy. Here we show that a 1D Dirac semimetal (DSM) nanowire is an ideal number-conserving platform to realize such Majorana physics. By inserting magnetic flux, a DSM nanowire is driven into a 1D crystalline-symmetry-protected semimetallic phase. Interaction enables the emergence of boundary Majorana zero modes, which is robust as a result of crystalline symmetry protection. We also explore several experimental consequences of Majorana signals.
Original language | English (US) |
---|---|
Article number | 156802 |
Journal | Physical review letters |
Volume | 120 |
Issue number | 15 |
DOIs | |
State | Published - Apr 10 2018 |
All Science Journal Classification (ASJC) codes
- Physics and Astronomy(all)
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Crystalline Symmetry-Protected Majorana Mode in Number-Conserving Dirac Semimetal Nanowires'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Physical review letters, Vol. 120, No. 15, 156802, 10.04.2018.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Crystalline Symmetry-Protected Majorana Mode in Number-Conserving Dirac Semimetal Nanowires
AU - Zhang, Rui Xing
AU - Liu, Chao Xing
N1 - Funding Information: In summary, we have proposed that magnetic-flux insertion drives DSM nanowire into a 1D crystalline-symmetry-protected semimetal, which serves as an ideal platform to realize Majorana physics without long-range superconductivity. In particular, crystalline symmetry forbids interchannel single-particle tunneling, and thus guarantees the stability of Majorana physics. We notice that DSM nanowire of Cd 3 As 2 has been successfully fabricated [51,52] , while these nanowires have been grown along [112] direction, so that C 4 rotation symmetry is explicitly broken and fails to support the RMZM. Other promising candidate materials include heterostructures of Kondo materials [53] , where a correlated DSM phase protected by C 4 symmetry is found. Finally, we emphasize once again that our theory is general and not limited to the DSM nanowires. The classification of 2D point groups in Supplemental Material will inspire future efforts into realizing symmetry-protected Majoranas in number-conserving systems. The authors are indebted to Meng Cheng for valuable suggestions. R.-X. Z. thanks Jian-Xiao Zhang, Jiabin Yu, and Jiahua Gu for helpful discussions, and particularly Lun-Hui Hu for collaboration on a closely related project. C.-X. L. and R.-X. Z acknowledge support from the Office of Naval Research (Grant No. N00014-15-1-2675). [1] 1 C. Nayak , S. H. Simon , A. Stern , M. Freedman , and S. D. Sarma , Rev. Mod. Phys. 80 , 1083 ( 2008 ). RMPHAT 0034-6861 10.1103/RevModPhys.80.1083 [2] 2 D. C. Tsui , H. L. Stormer , and A. C. Gossard , Phys. Rev. Lett. 48 , 1559 ( 1982 ). PRLTAO 0031-9007 10.1103/PhysRevLett.48.1559 [3] 3 G. Moore and N. Read , Nucl. Phys. B360 , 362 ( 1991 ). NUPBBO 0550-3213 10.1016/0550-3213(91)90407-O [4] 4 A. Y. Kitaev , Ann. Phys. (Amsterdam) 303 , 2 ( 2003 ). APNYA6 0003-4916 10.1016/S0003-4916(02)00018-0 [5] 5 N. Read and D. Green , Phys. Rev. B 61 , 10267 ( 2000 ). PRBMDO 0163-1829 10.1103/PhysRevB.61.10267 [6] 6 D. A. Ivanov , Phys. Rev. Lett. 86 , 268 ( 2001 ). PRLTAO 0031-9007 10.1103/PhysRevLett.86.268 [7] 7 A. Y. Kitaev , Phys. Usp. 44 , 131 ( 2001 ). PHUSEY 1063-7869 10.1070/1063-7869/44/10S/S29 [8] 8 J. Alicea , Rep. Prog. Phys. 75 , 076501 ( 2012 ). RPPHAG 0034-4885 10.1088/0034-4885/75/7/076501 [9] 9 R. M. Lutchyn , J. D. Sau , and S. DasSarma , Phys. Rev. Lett. 105 , 077001 ( 2010 ). PRLTAO 0031-9007 10.1103/PhysRevLett.105.077001 [10] 10 Y. Oreg , G. Refael , and F. von Oppen , Phys. Rev. Lett. 105 , 177002 ( 2010 ). PRLTAO 0031-9007 10.1103/PhysRevLett.105.177002 [11] 11 V. Mourik , K. Zuo , S. M. Frolov , S. Plissard , E. Bakkers , and L. P. Kouwenhoven , Science 336 , 1003 ( 2012 ). SCIEAS 0036-8075 10.1126/science.1222360 [12] 12 A. Das , Y. Ronen , Y. Most , Y. Oreg , M. Heiblum , and H. Shtrikman , Nat. Phys. 8 , 887 ( 2012 ). NPAHAX 1745-2473 10.1038/nphys2479 [13] 13 S. Nadj-Perge , I. K. Drozdov , J. Li , H. Chen , S. Jeon , J. Seo , A. H. MacDonald , B. A. Bernevig , and A. Yazdani , Science 346 , 602 ( 2014 ). SCIEAS 0036-8075 10.1126/science.1259327 [14] 14 H. Zhang , C.-X. Liu , S. Gazibegovic , D. Xu , J. A. Logan , G. Wang , N. van Loo , J. D. Bommer , M. W. de Moor , D. Car , arXiv:1710.10701 . [15] 15 L. Fidkowski , R. M. Lutchyn , C. Nayak , and M. P. A. Fisher , Phys. Rev. B 84 , 195436 ( 2011 ). PRBMDO 1098-0121 10.1103/PhysRevB.84.195436 [16] 16 M. Cheng and H.-H. Tu , Phys. Rev. B 84 , 094503 ( 2011 ). PRBMDO 1098-0121 10.1103/PhysRevB.84.094503 [17] 17 J. D. Sau , B. I. Halperin , K. Flensberg , and S. DasSarma , Phys. Rev. B 84 , 144509 ( 2011 ). PRBMDO 1098-0121 10.1103/PhysRevB.84.144509 [18] 18 C. V. Kraus , M. Dalmonte , M. A. Baranov , A. M. Läuchli , and P. Zoller , Phys. Rev. Lett. 111 , 173004 ( 2013 ). PRLTAO 0031-9007 10.1103/PhysRevLett.111.173004 [19] 19 G. Ortiz , J. Dukelsky , E. Cobanera , C. Esebbag , and C. Beenakker , Phys. Rev. Lett. 113 , 267002 ( 2014 ). PRLTAO 0031-9007 10.1103/PhysRevLett.113.267002 [20] 20 J. Klinovaja and D. Loss , Phys. Rev. Lett. 112 , 246403 ( 2014 ). PRLTAO 0031-9007 10.1103/PhysRevLett.112.246403 [21] 21 F. Iemini , L. Mazza , D. Rossini , R. Fazio , and S. Diehl , Phys. Rev. Lett. 115 , 156402 ( 2015 ). PRLTAO 0031-9007 10.1103/PhysRevLett.115.156402 [22] 22 N. Lang and H. P. Büchler , Phys. Rev. B 92 , 041118 ( 2015 ). PRBMDO 1098-0121 10.1103/PhysRevB.92.041118 [23] 23 C. Chen , W. Yan , C. Ting , Y. Chen , and F. Burnell , arXiv:1701.01794 . [24] 24 F. Iemini , L. Mazza , L. Fallani , P. Zoller , R. Fazio , and M. Dalmonte , Phys. Rev. Lett. 118 , 200404 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.118.200404 [25] 25 Z. Wang , Y. Sun , X.-Q. Chen , C. Franchini , G. Xu , H. Weng , X. Dai , and Z. Fang , Phys. Rev. B 85 , 195320 ( 2012 ). PRBMDO 1098-0121 10.1103/PhysRevB.85.195320 [26] 26 Z. Wang , H. Weng , Q. Wu , X. Dai , and Z. Fang , Phys. Rev. B 88 , 125427 ( 2013 ). PRBMDO 1098-0121 10.1103/PhysRevB.88.125427 [27] 27 See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.120.156802 for a solution of Dirac semimetal in cylindrical coordinates, the magnetic field dependence, a microscopic derivation of pair-hopping interaction g , an estimation of the magnitude of g , a discussion about Klein factors and the Majorana solution at the Luther-Emery point, a discussion of the emergent Z M fermion parity from a Z N symmetry, a generalization from C 4 symmetry to the 2D point groups, a detailed calculation of single electron tunneling amplitude, an introduction of DEBC method, and a detailed discussion about the 2LL-LL junction phase diagram, which contains [28–37]. [28] 28 C. L. Kane , R. Mukhopadhyay , and T. C. Lubensky , Phys. Rev. Lett. 88 , 036401 ( 2002 ). PRLTAO 0031-9007 10.1103/PhysRevLett.88.036401 [29] 29 J. C. Y. Teo and C. L. Kane , Phys. Rev. B 89 , 085101 ( 2014 ). PRBMDO 1098-0121 10.1103/PhysRevB.89.085101 [30] 30 T. Neupert , C. Chamon , C. Mudry , and R. Thomale , Phys. Rev. B 90 , 205101 ( 2014 ). PRBMDO 1098-0121 10.1103/PhysRevB.90.205101 [31] 31 E. Sagi and Y. Oreg , Phys. Rev. B 90 , 201102 ( 2014 ). PRBMDO 1098-0121 10.1103/PhysRevB.90.201102 [32] 32 J. Klinovaja and Y. Tserkovnyak , Phys. Rev. B 90 , 115426 ( 2014 ). PRBMDO 1098-0121 10.1103/PhysRevB.90.115426 [33] 33 B. Bellazzini , M. Mintchev , and P. Sorba , J. Phys. A 40 , 2485 ( 2007 ). JPAMB5 1751-8113 10.1088/1751-8113/40/10/017 [34] 34 B. Bellazzini , M. Burrello , M. Mintchev , and P. Sorba , Proc. Symp. Pure Math. 77 , 639 ( 2008 ). 10.1090/pspum/077/2459894 [35] 35 B. Bellazzini , M. Mintchev , and P. Sorba , Phys. Rev. B 80 , 245441 ( 2009 ). PRBMDO 1098-0121 10.1103/PhysRevB.80.245441 [36] 36 A. Agarwal , S. Das , S. Rao , and D. Sen , Phys. Rev. Lett. 103 , 026401 ( 2009 ). PRLTAO 0031-9007 10.1103/PhysRevLett.103.026401 [37] 37 J.-P. Jay-Gerin , M. Aubin , and L. Caron , Solid State Commun. 21 , 771 ( 1977 ). SSCOA4 0038-1098 10.1016/0038-1098(77)91149-8 [38] 38 K.-I. Imura and Y. Takane , Phys. Rev. B 84 , 245415 ( 2011 ). PRBMDO 1098-0121 10.1103/PhysRevB.84.245415 [39] In the limit R → ∞ , the energy gap in both spin sectors approaches 0 and DSM nanowire evolves into a bulk DSM sample with two bulk Dirac points connected by Fermi arc states. [40] 40 G. Rosenberg , H.-M. Guo , and M. Franz , Phys. Rev. B 82 , 041104 ( 2010 ). PRBMDO 1098-0121 10.1103/PhysRevB.82.041104 [41] The nanowire configuration is modeled by taking the periodic (open) boundary condition along the z ( x and y ) direction. Realistic parameters of Cd 2 As 3 are applied in the calculation, and the cross section in the x - y plane is chosen to be a 16 × 16 square. [42] Notice that the effective k p Hamiltonian in Eq. (1) has the full-rotation O ( 2 ) symmetry, since we focused on the continuum limit and dropped higher order terms. However, when we consider interaction effects, it is important to distinguish this artificial O ( 2 ) symmetry from the realistic C 4 symmetry. This is because O(2) is a stronger symmetry and also imposes a stronger constraint to interaction terms. In particular, the pair-hopping term g that leads to Majorana physics transfers angular momentum by Δ J tot = 4 . As a result, pair-hopping interaction only preserves C 4 symmetry, but explicitly breaks O ( 2 ) symmetry. [43] 43 T. Giamarchi , Quantum Physics in One Dimension ( Oxford University Press , Oxford, 2004 ), Vol. 121 . [44] 44 E. Fradkin , Field Theories of Condensed Matter Physics ( Cambridge University Press , Cambridge, 2013 ). [45] 45 D. J. Clarke , J. Alicea , and K. Shtengel , Nat. Commun. 4 , 1348 ( 2013 ). NCAOBW 2041-1723 10.1038/ncomms2340 [46] 46 A. Keselman and E. Berg , Phys. Rev. B 91 , 235309 ( 2015 ). PRBMDO 1098-0121 10.1103/PhysRevB.91.235309 [47] 47 K. T. Law , P. A. Lee , and T. K. Ng , Phys. Rev. Lett. 103 , 237001 ( 2009 ). PRLTAO 0031-9007 10.1103/PhysRevLett.103.237001 [48] 48 L. Fidkowski , J. Alicea , N. H. Lindner , R. M. Lutchyn , and M. P. A. Fisher , Phys. Rev. B 85 , 245121 ( 2012 ). PRBMDO 1098-0121 10.1103/PhysRevB.85.245121 [49] 49 M. Oshikawa , C. Chamon , and I. Affleck , J. Stat. Mech. ( 2006 ) P02008 . JSMTC6 1742-5468 10.1088/1742-5468/2006/02/P02008 [50] 50 C.-Y. Hou , A. Rahmani , A. E. Feiguin , and C. Chamon , Phys. Rev. B 86 , 075451 ( 2012 ). PRBMDO 1098-0121 10.1103/PhysRevB.86.075451 [51] 51 C.-Z. Li , L.-X. Wang , H. Liu , J. Wang , Z.-M. Liao , and D.-P. Yu , Nat. Commun. 6 , 10137 ( 2015 ). NCAOBW 2041-1723 10.1038/ncomms10137 [52] 52 L.-X. Wang , C.-Z. Li , D.-P. Yu , and Z.-M. Liao , Nat. Commun. 7 , 10769 ( 2016 ). NCAOBW 2041-1723 10.1038/ncomms10769 [53] 53 S. Ok , M. Legner , T. Neupert , and A. M. Cook , arXiv:1703.03804 . Publisher Copyright: © 2018 American Physical Society.
PY - 2018/4/10
Y1 - 2018/4/10
N2 - One of the cornerstones for topological quantum computations is the Majorana zero mode, which has been intensively searched in fractional quantum Hall systems and topological superconductors. Several recent works suggest that such an exotic mode can also exist in a one-dimensional (1D) interacting double-wire setup even without long-range superconductivity. A notable instability in these proposals comes from interchannel single-particle tunneling that spoils the topological ground state degeneracy. Here we show that a 1D Dirac semimetal (DSM) nanowire is an ideal number-conserving platform to realize such Majorana physics. By inserting magnetic flux, a DSM nanowire is driven into a 1D crystalline-symmetry-protected semimetallic phase. Interaction enables the emergence of boundary Majorana zero modes, which is robust as a result of crystalline symmetry protection. We also explore several experimental consequences of Majorana signals.
AB - One of the cornerstones for topological quantum computations is the Majorana zero mode, which has been intensively searched in fractional quantum Hall systems and topological superconductors. Several recent works suggest that such an exotic mode can also exist in a one-dimensional (1D) interacting double-wire setup even without long-range superconductivity. A notable instability in these proposals comes from interchannel single-particle tunneling that spoils the topological ground state degeneracy. Here we show that a 1D Dirac semimetal (DSM) nanowire is an ideal number-conserving platform to realize such Majorana physics. By inserting magnetic flux, a DSM nanowire is driven into a 1D crystalline-symmetry-protected semimetallic phase. Interaction enables the emergence of boundary Majorana zero modes, which is robust as a result of crystalline symmetry protection. We also explore several experimental consequences of Majorana signals.
UR - http://www.scopus.com/inward/record.url?scp=85045284376&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85045284376&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.120.156802
DO - 10.1103/PhysRevLett.120.156802
M3 - Article
C2 - 29756865
AN - SCOPUS:85045284376
SN - 0031-9007
VL - 120
JO - Physical review letters
JF - Physical review letters
IS - 15
M1 - 156802
ER -