Abstract
Herpesviruses maintain a dynamic balance between latency and productive infection. This is a complex process regulated by viral and cellular factors. We have developed a Murine gammaherpesvirus 68 (MHV-68) model system in which to study mechanisms underlying balance between latency and lytic infection. We have generated an epithelial cell line that carries MHV-68 in a tightly latent form by using a bacterial artificial chromosome clone of the virus genome with a mutation in the MHV-68 major lytic R transactivator gene. Complementation of this defect in trans by transfection with a plasmid encoding R transactivator initiated and restored the productive cycle. This cell line model was used to investigate transcription factor occupancy (CCCTC binding factor [CTCF] and Sp1) of the two internal repeat elements in the viral genome during latency and reactivation using chromatin immunoprecipitation. Our results show that CTCF can bind to the 40-bp and the 100-bp repeat sequences during latency, whereas binding is reduced upon reactivation. In contrast, Sp1 only bound to the 100-bp repeat after reactivation. Our results indicate that the large internal repeat sequences in MHV-68 have different functions. We hypothesise that the 40-bp repeat may be involved in regulation of gene expression during the maintenance of latency, while the 100-bp repeat domain may be involved in regulation of the lytic cycle.
Original language | English (US) |
---|---|
Pages (from-to) | 265-273 |
Number of pages | 9 |
Journal | Virus Genes |
Volume | 45 |
Issue number | 2 |
DOIs | |
State | Published - Oct 2012 |
All Science Journal Classification (ASJC) codes
- Molecular Biology
- Genetics
- Virology