CTCF boundary remodels chromatin domain and drives aberrant HOX gene transcription in acute myeloid leukemia

Huacheng Luo, Fei Wang, Jie Zha, Haoli Li, Bowen Yan, Qinghua Du, Fengchun Yang, Amin Sobh, Christopher Vulpe, Leylah Drusbosky, Christopher Cogle, Iouri Chepelev, Bing Xu, Stephen D. Nimer, Jonathan Licht, Yi Qiu, Baoan Chen, Mingjiang Xu, Suming Huang

Research output: Contribution to journalArticlepeer-review

49 Scopus citations

Abstract

HOX gene dysregulation is a common feature of acute myeloid leukemia (AML). The molecular mechanisms underlying aberrant HOX gene expression and associated AML pathogenesis remain unclear. The nuclear protein CCCTC-binding factor (CTCF), when bound to insulator sequences, constrains temporal HOX gene-expression patterns within confined chromatin domains for normal development. Here, we used targeted pooled CRISPR-Cas9–knockout library screening to interrogate the function of CTCF boundaries in the HOX gene loci. We discovered that the CTCF binding site located between HOXA7 and HOXA9 genes (CBS7/9) is critical for establishing and maintaining aberrant HOXA9-HOXA13 gene expression in AML. Disruption of the CBS7/9 boundary resulted in spreading of repressive H3K27me3 into the posterior active HOXA chromatin domain that subsequently impaired enhancer/promoter chromatin accessibility and disrupted ectopic long-range interactions among the posterior HOXA genes. Consistent with the role of the CBS7/9 boundary in HOXA locus chromatin organization, attenuation of the CBS7/9 boundary function reduced posterior HOXA gene expression and altered myeloid-specific transcriptome profiles important for pathogenesis of myeloid malignancies. Furthermore, heterozygous deletion of the CBS7/9 chromatin boundary in the HOXA locus reduced human leukemic blast burden and enhanced survival of transplanted AML cell xenograft and patient-derived xenograft mouse models. Thus, the CTCF boundary constrains the normal gene-expression program, as well as plays a role in maintaining the oncogenic transcription program for leukemic transformation. The CTCF boundaries may serve as novel therapeutic targets for the treatment of myeloid malignancies.

Original languageEnglish (US)
Pages (from-to)837-848
Number of pages12
JournalBlood
Volume132
Issue number8
DOIs
StatePublished - Aug 23 2018

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Immunology
  • Hematology
  • Cell Biology

Fingerprint

Dive into the research topics of 'CTCF boundary remodels chromatin domain and drives aberrant HOX gene transcription in acute myeloid leukemia'. Together they form a unique fingerprint.

Cite this