Abstract
We investigate the current-induced spin polarization in the two-dimensional hole gas (2DHG) with the structure inversion asymmetry. By using the perturbation theory, we rederive the effective k -cubic Rashba Hamiltonian for 2DHG and the generalized spin operators accordingly. Then based on the linear response theory, we analytically and numerically calculate the current-induced spin polarization with the disorder effect considered. We have found that, quite different from the two-dimensional electron gas, the spin polarization in 2DHG linearly depends on Fermi energy in the low-doping regime, and with increasing Fermi energy, the spin polarization may be suppressed and even changes its sign. We predict a pronounced peak of the spin polarization in 2DHG once the Fermi level is somewhere between the minimum points of two spin-split branches of the lowest light-hole subband. We discuss the possibility of measurements in experiments as regards the temperature and the width of quantum wells.
Original language | English (US) |
---|---|
Article number | 125345 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 77 |
Issue number | 12 |
DOIs | |
State | Published - Mar 31 2008 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics