Curved exponential family models for social networks

Research output: Contribution to journalArticlepeer-review

339 Scopus citations


Curved exponential family models are a useful generalization of exponential random graph models (ERGMs). In particular, models involving the alternating k-star, alternating k-triangle, and alternating k-twopath statistics of Snijders et al. [Snijders, T.A.B., Pattison, P.E., Robins, G.L., Handcock, M.S., in press. New specifications for exponential random graph models. Sociological Methodology] may be viewed as curved exponential family models. This article unifies recent material in the literature regarding curved exponential family models for networks in general and models involving these alternating statistics in particular. It also discusses the intuition behind rewriting the three alternating statistics in terms of the degree distribution and the recently introduced shared partner distributions. This intuition suggests a redefinition of the alternating k-star statistic. Finally, this article demonstrates the use of the statnet package in R for fitting models of this sort, comparing new results on an oft-studied network dataset with results found in the literature.

Original languageEnglish (US)
Pages (from-to)216-230
Number of pages15
JournalSocial Networks
Issue number2
StatePublished - May 2007

All Science Journal Classification (ASJC) codes

  • Anthropology
  • Sociology and Political Science
  • General Social Sciences
  • General Psychology


Dive into the research topics of 'Curved exponential family models for social networks'. Together they form a unique fingerprint.

Cite this