TY - JOUR
T1 - Cutaneous microvascular dysfunction correlates with serum LDL and sLOX-1 receptor concentrations
AU - Kenney, W. Larry
AU - Cannon, Joseph G.
AU - Alexander, Lacy M.
PY - 2013/1
Y1 - 2013/1
N2 - The human cutaneous circulation is an accessible and representative regional circulation for investigating mechanisms of microvascular dysfunction, a systemic disease process occurring early in the pathogenesis of atherosclerosis. Elevated concentrations of low-density lipoproteins ([LDL]) are highly atherogenic and independently associated with the severity of coronary atherosclerosis through their actions on the lectin-like oxidized LDL receptors (LOX-1). We hypothesized that cutaneous microvascular dysfunction, as measured by a decrement in endothelial nitric oxide- (NO-) dependent vasodilation during local heating, would be correlated with serum [LDL], oxidized [LDL], and soluble LOX-1 receptors [sLOX-1]. Intradermal microdialysis fibers were placed in the skin of 53 otherwise healthy men and women (aged 52±8years) whose serum [LDL] ranged from 72 to 233mg/dL. Skin blood flow was measured by laser Doppler flowmetry over a local forearm skin site as it was heated (42°C) to induce sustained local vasodilation. After flux plateaued, L-NAME was infused to block endothelial NO synthase in order to determine the NO-dependent portion of the vasodilatory response. Data were normalized to maximal cutaneous vascular conductance (CVC). NO-dependent vasodilation was reduced as a linear function of [LDL] (R2=0.303, p<0.001), oxidized [LDL] (R2=0.214, p<0.001), and [sLOX-1] (R2=0.259, p=0.026) but was unrelated to high-density lipoprotein (HDL) concentration (R2=0.003, p=0.68). Hypercholesterolemia-induced microvascular dysfunction is related to various LDL markers and involves a reduction in NO-dependent vasodilation that appears to be a progressive process measurable in the skin microcirculation.
AB - The human cutaneous circulation is an accessible and representative regional circulation for investigating mechanisms of microvascular dysfunction, a systemic disease process occurring early in the pathogenesis of atherosclerosis. Elevated concentrations of low-density lipoproteins ([LDL]) are highly atherogenic and independently associated with the severity of coronary atherosclerosis through their actions on the lectin-like oxidized LDL receptors (LOX-1). We hypothesized that cutaneous microvascular dysfunction, as measured by a decrement in endothelial nitric oxide- (NO-) dependent vasodilation during local heating, would be correlated with serum [LDL], oxidized [LDL], and soluble LOX-1 receptors [sLOX-1]. Intradermal microdialysis fibers were placed in the skin of 53 otherwise healthy men and women (aged 52±8years) whose serum [LDL] ranged from 72 to 233mg/dL. Skin blood flow was measured by laser Doppler flowmetry over a local forearm skin site as it was heated (42°C) to induce sustained local vasodilation. After flux plateaued, L-NAME was infused to block endothelial NO synthase in order to determine the NO-dependent portion of the vasodilatory response. Data were normalized to maximal cutaneous vascular conductance (CVC). NO-dependent vasodilation was reduced as a linear function of [LDL] (R2=0.303, p<0.001), oxidized [LDL] (R2=0.214, p<0.001), and [sLOX-1] (R2=0.259, p=0.026) but was unrelated to high-density lipoprotein (HDL) concentration (R2=0.003, p=0.68). Hypercholesterolemia-induced microvascular dysfunction is related to various LDL markers and involves a reduction in NO-dependent vasodilation that appears to be a progressive process measurable in the skin microcirculation.
UR - http://www.scopus.com/inward/record.url?scp=84871714774&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84871714774&partnerID=8YFLogxK
U2 - 10.1016/j.mvr.2012.10.010
DO - 10.1016/j.mvr.2012.10.010
M3 - Article
C2 - 23137925
AN - SCOPUS:84871714774
SN - 0026-2862
VL - 85
SP - 112
EP - 117
JO - Microvascular Research
JF - Microvascular Research
IS - 1
ER -