Cyclotron radiation emission spectroscopy signal classification with machine learning in project 8

A. Ashtari Esfahani, S. Böser, N. Buzinsky, R. Cervantes, C. Claessens, L. De Viveiros, M. Fertl, J. A. Formaggio, L. Gladstone, M. Guigue, K. M. Heeger, J. Johnston, A. M. Jones, K. Kazkaz, B. H. Laroque, A. Lindman, E. Machado, B. Monreal, E. C. Morrison, J. A. NikkelE. Novitski, N. S. Oblath, W. Pettus, R. G.H. Robertson, G. Rybka, L. Saldaña, V. Sibille, M. Schram, P. L. Slocum, Y. H. Sun, T. Thümmler, B. A. Vandevender, T. E. Weiss, T. Wendler, E. Zayas

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

The cyclotron radiation emission spectroscopy (CRES) technique pioneered by Project 8 measures electromagnetic radiation from individual electrons gyrating in a background magnetic field to construct a highly precise energy spectrum for beta decay studies and other applications. The detector, magnetic trap geometry and electron dynamics give rise to a multitude of complex electron signal structures which carry information about distinguishing physical traits. With machine learning models, we develop a scheme based on these traits to analyze and classify CRES signals. Proper understanding and use of these traits will be instrumental to improve cyclotron frequency reconstruction and boost the potential of Project 8 to achieve world-leading sensitivity on the tritium endpoint measurement in the future.

Original languageEnglish (US)
Article number033004
JournalNew Journal of Physics
Volume22
Issue number3
DOIs
StatePublished - 2020

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Cyclotron radiation emission spectroscopy signal classification with machine learning in project 8'. Together they form a unique fingerprint.

Cite this