TY - JOUR
T1 - Cytoplasmic accumulation of the RNA-binding protein HuR stabilizes the ornithine decarboxylase transcript in a murine nonmelanoma skin cancer model
AU - Nowotarski, Shannon L.
AU - Shantz, Lisa M.
PY - 2010/10/8
Y1 - 2010/10/8
N2 - Ornithine decarboxylase (ODC) is the first and usually rate-limiting enzyme in the polyamine biosynthetic pathway. Under normal physiological conditions, polyamine content and ODC enzyme activity are highly regulated. However, the induction of ODC activity is an early step in neoplastic transformation. The studies described here use normal mouse keratinocytes (C5N cells), and spindle carcinoma cells (A5 cells) to explore the regulation of ODC in nonmelanoma skin cancer development. Previous results have shown that induction of ODC activity is both necessary and sufficient for the promotion of skin tumors. We see a marked increase in ODC enzyme activity in A5 cells compared with C5N keratinocytes, which correlates with a 4-fold stabilization of ODC mRNA. These data suggest that ODC is post-transcriptionally regulated in skin tumor development. Thus, we sought to investigate whether the ODC transcript interacts with the RNA-binding protein HuR, which is known to bind to and stabilize its target mRNAs.Weshow that HuR is able to bind to the ODC 3′-UTR in A5 cells but not in C5N cells. Immunofluorescence results reveal that HuR is present in both the nucleus and cytoplasm of A5 cells, whereas C5N cells exhibit strictly nuclear localization of HuR. Knockdown experiments in A5 cells showed that when HuR is depleted, ODC RNA becomes less stable, and ODC enzyme activity decreases. Together, these data support the hypothesis that HuR plays a causative role in ODC up-regulation during nonmelanoma skin cancer development by binding to and stabilizing the ODC transcript.
AB - Ornithine decarboxylase (ODC) is the first and usually rate-limiting enzyme in the polyamine biosynthetic pathway. Under normal physiological conditions, polyamine content and ODC enzyme activity are highly regulated. However, the induction of ODC activity is an early step in neoplastic transformation. The studies described here use normal mouse keratinocytes (C5N cells), and spindle carcinoma cells (A5 cells) to explore the regulation of ODC in nonmelanoma skin cancer development. Previous results have shown that induction of ODC activity is both necessary and sufficient for the promotion of skin tumors. We see a marked increase in ODC enzyme activity in A5 cells compared with C5N keratinocytes, which correlates with a 4-fold stabilization of ODC mRNA. These data suggest that ODC is post-transcriptionally regulated in skin tumor development. Thus, we sought to investigate whether the ODC transcript interacts with the RNA-binding protein HuR, which is known to bind to and stabilize its target mRNAs.Weshow that HuR is able to bind to the ODC 3′-UTR in A5 cells but not in C5N cells. Immunofluorescence results reveal that HuR is present in both the nucleus and cytoplasm of A5 cells, whereas C5N cells exhibit strictly nuclear localization of HuR. Knockdown experiments in A5 cells showed that when HuR is depleted, ODC RNA becomes less stable, and ODC enzyme activity decreases. Together, these data support the hypothesis that HuR plays a causative role in ODC up-regulation during nonmelanoma skin cancer development by binding to and stabilizing the ODC transcript.
UR - http://www.scopus.com/inward/record.url?scp=77957774913&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77957774913&partnerID=8YFLogxK
U2 - 10.1074/jbc.M110.148767
DO - 10.1074/jbc.M110.148767
M3 - Article
C2 - 20685649
AN - SCOPUS:77957774913
SN - 0021-9258
VL - 285
SP - 31885
EP - 31894
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 41
ER -