Damping and relative mode-shape estimation in near real-time through phasor approach

Nilanjan Ray Chaudhuri, Balarko Chaudhuri

Research output: Contribution to journalArticlepeer-review

29 Scopus citations

Abstract

A technique for estimating damping and electromechanical mode-shape in near real-time as oscillations develop under transient condition is presented. At each sampling instant, measured signals are expressed as phasors using corrected values of modal frequencies. Damping is obtained from the exponential variation of estimated phasor magnitude using a moving window least squares (LS) algorithm. The relative mode-shape is computed directly from the magnitude and phase angle of the phasors. Random variations in loads are considered to examine possible impact on phasor estimation, especially the frequency correction loop. Accuracy and speed of convergence is validated by comparing the time variation of estimated dampings and relative mode-shapes against the actual values obtained from the linearized models under respective operating conditions. Besides the well-known four-machine, two-area test system, a 16-machine, five-area system is considered for illustration of the concept. Monte Carlo simulations are used to capture the statistical variability in estimation as a result of persistent disturbances (e.g., random fluctuations in loads) leading to different signal-to-noise ratios (SNRs). Results from a commercial real-time simulator illustrate the practical feasibility of the proposed approach.

Original languageEnglish (US)
Article number5471110
Pages (from-to)364-373
Number of pages10
JournalIEEE Transactions on Power Systems
Volume26
Issue number1
DOIs
StatePublished - Feb 2011

All Science Journal Classification (ASJC) codes

  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Damping and relative mode-shape estimation in near real-time through phasor approach'. Together they form a unique fingerprint.

Cite this