TY - GEN
T1 - DANCE
T2 - 38th International Conference on Machine Learning, ICML 2021
AU - Lu, Yang Young
AU - Guo, Wenbo
AU - Xing, Xinyu
AU - Noble, William Stafford
N1 - Publisher Copyright:
Copyright © 2021 by the author(s)
PY - 2021
Y1 - 2021
N2 - Saliency methods can make deep neural network predictions more interpretable by identifying a set of critical features in an input sample, such as pixels that contribute most strongly to a prediction made by an image classifier. Unfortunately, recent evidence suggests that many saliency methods poorly perform, especially in situations where gradients are saturated, inputs contain adversarial perturbations, or predictions rely upon inter-feature dependence. To address these issues, we propose a framework, DANCE, which improves the robustness of saliency methods by following a two-step procedure. First, we introduce a perturbation mechanism that subtly varies the input sample without changing its intermediate representations. Using this approach, we can gather a corpus of perturbed (“decoy”) data samples while ensuring that the perturbed and original input samples follow similar distributions. Second, we compute saliency maps for the decoy samples and propose a new method to aggregate saliency maps. With this design, we offset influence of gradient saturation. From a theoretical perspective, we show that the aggregated saliency map not only captures inter-feature dependence but, more importantly, is robust against previously described adversarial perturbation methods. Our empirical results suggest that, both qualitatively and quantitatively, DANCE outperforms existing methods in a variety of application domains.
AB - Saliency methods can make deep neural network predictions more interpretable by identifying a set of critical features in an input sample, such as pixels that contribute most strongly to a prediction made by an image classifier. Unfortunately, recent evidence suggests that many saliency methods poorly perform, especially in situations where gradients are saturated, inputs contain adversarial perturbations, or predictions rely upon inter-feature dependence. To address these issues, we propose a framework, DANCE, which improves the robustness of saliency methods by following a two-step procedure. First, we introduce a perturbation mechanism that subtly varies the input sample without changing its intermediate representations. Using this approach, we can gather a corpus of perturbed (“decoy”) data samples while ensuring that the perturbed and original input samples follow similar distributions. Second, we compute saliency maps for the decoy samples and propose a new method to aggregate saliency maps. With this design, we offset influence of gradient saturation. From a theoretical perspective, we show that the aggregated saliency map not only captures inter-feature dependence but, more importantly, is robust against previously described adversarial perturbation methods. Our empirical results suggest that, both qualitatively and quantitatively, DANCE outperforms existing methods in a variety of application domains.
UR - http://www.scopus.com/inward/record.url?scp=85126801859&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85126801859&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85126801859
T3 - Proceedings of Machine Learning Research
SP - 7124
EP - 7133
BT - Proceedings of the 38th International Conference on Machine Learning, ICML 2021
PB - ML Research Press
Y2 - 18 July 2021 through 24 July 2021
ER -