Abstract
Data assimilation in dynamical networks is intrinsically challenging. A method is introduced for the tracking of heterogeneous networks of oscillators or excitable cells in a nonstationary environment, using a homogeneous model network to expedite the accurate reconstruction of parameters and unobserved variables. An implementation using ensemble Kalman filtering to track the states of the heterogeneous network is demonstrated on simulated data and applied to a mammalian brain network experiment. The approach has broad applicability for the prediction and control of biological and physical networks.
Original language | English (US) |
---|---|
Article number | 051909 |
Journal | Physical Review E - Statistical, Nonlinear, and Soft Matter Physics |
Volume | 79 |
Issue number | 5 |
DOIs | |
State | Published - May 13 2009 |
All Science Journal Classification (ASJC) codes
- Condensed Matter Physics
- Statistical and Nonlinear Physics
- Statistics and Probability