Abstract
In the U.S. Navy, there is a growing demand for intelligence, surveillance, and reconnaissance (ISR) data, which help Navy commanders obtain situational awareness and help Navy vessels perform a host of mission-critical tasks. The amount of data generated by ISR sensors has, however, become overwhelming, and Navy analysts are struggling to keep pace with this data flood. Their challenges include extremely slow download times, workstations cluttered with applications, and stovepiped databases and networks — challenges that are only going to intensify as the Navy fields new and additional sensors in the coming years. Indeed, if the Navy does not change the way it collects, processes, exploits, and disseminates information, it will reach an ISR "tipping point" — the point at which its analysts are no longer able to complete a minimum number of exploitation tasks within given time constraints — as soon as 2016.
The authors explore options for solving the Navy's "big data" challenge, considering changes across four dimensions: people, tools and technology, data and data architectures, and demand and demand management. They recommend that the Navy pursue a cloud solution — a strategy similar to those adopted by Google, the Intelligence Community, and other large organizations grappling with big data's challenges and opportunities.
The authors explore options for solving the Navy's "big data" challenge, considering changes across four dimensions: people, tools and technology, data and data architectures, and demand and demand management. They recommend that the Navy pursue a cloud solution — a strategy similar to those adopted by Google, the Intelligence Community, and other large organizations grappling with big data's challenges and opportunities.
Original language | English (US) |
---|---|
Place of Publication | Santa Monica |
Publisher | RAND Corporation |
Number of pages | 87 |
ISBN (Print) | 978-0-8330-8429-3 |
State | Published - 2014 |