Data Fusion and Pattern Classification in Dynamical Systems Via Symbolic Time Series Analysis

Xiangyi Chen, Asok Ray

Research output: Contribution to journalArticlepeer-review

Abstract

Symbolic time series analysis (STSA) plays an important role in the investigation of continuously evolving dynamical systems, where the capability to interpret the joint effects of multiple sensor signals is essential for adequate representation of the embedded knowledge. This technical brief develops and validates, by simulation, an STSA-based algorithm to make timely decisions on dynamical systems for information fusion and pattern classification from ensembles of multisensor time series data. In this context, one of the most commonly used methods has been neural networks (NN) in their various configurations; however, these NN-based methods may require large-volume data and prolonged computational time for training. An alternative feasible method is the STSA-based probabilistic finite state automata (PFSA), which has been shown in recent literature to require significantly less training data and to be much faster than NN for training and, to some extent, for testing. This technical brief reports a modification of the current PFSA methods to accommodate (possibly heterogeneous and not necessarily tightly synchronized) multisensor data fusion and (supervised learning-based) pattern classification in real-time. Efficacy of the proposed method is demonstrated by fusion of time series of position and velocity sensor data, generated from a simulation model of the forced Duffing equation.

Original languageEnglish (US)
Article number094502
JournalJournal of Dynamic Systems, Measurement and Control, Transactions of the ASME
Volume145
Issue number9
DOIs
StatePublished - Sep 1 2023

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Information Systems
  • Instrumentation
  • Mechanical Engineering
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Data Fusion and Pattern Classification in Dynamical Systems Via Symbolic Time Series Analysis'. Together they form a unique fingerprint.

Cite this