De novo resonance assignment of the transmembrane domain of LR11/SorLA in E. coli membranes

Xiaoyan Ding, Riqiang Fu, Fang Tian

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


Membrane proteins perform many important cellular functions. Historically, structural studies of these proteins have been conducted in detergent preparations and synthetic lipid bilayers. More recently, magic-angle-spinning (MAS) solid-state NMR has been employed to analyze membrane proteins in native membrane environments, but resonance assignments with this technique remain challenging due to limited spectral resolution and high resonance degeneracy. To tackle this issue, we combine reverse labeling of amino acids, frequency-selective dipolar dephasing, and NMR difference spectroscopy. These methods have resulted in nearly complete resonance assignments of the transmembrane domain of human LR11 (SorLA) protein in E. coli membranes. To reduce background signals from E. coli lipids and proteins and improve spectral sensitivity, we effectively utilize amylose affinity chromatography to prepare membrane vesicles when MBP is included as a fusion partner in the expression construct.

Original languageEnglish (US)
Article number106639
JournalJournal of Magnetic Resonance
StatePublished - Jan 2020

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Biochemistry
  • Nuclear and High Energy Physics
  • Condensed Matter Physics


Dive into the research topics of 'De novo resonance assignment of the transmembrane domain of LR11/SorLA in E. coli membranes'. Together they form a unique fingerprint.

Cite this