TY - JOUR
T1 - De-SAG
T2 - On the De-Anonymization of Structure-Attribute Graph Data
AU - Ji, Shouling
AU - Wang, Ting
AU - Chen, Jianhai
AU - Li, Weiqing
AU - Mittal, Prateek
AU - Beyah, Raheem
N1 - Publisher Copyright:
© 2004-2012 IEEE.
PY - 2019/7/1
Y1 - 2019/7/1
N2 - In this paper, we study the impacts of non-Personal Identifiable Information (non-PII) on the privacy of graph data with attribute information (e.g., social networks data with users' profiles (attributes)), namely Structure-Attribute Graph (SAG) data, both theoretically and empirically. Our main contributions are two-fold: (i) we conduct the first attribute-based anonymity analysis for SAG data under both preliminary and general models. By careful quantification, we obtain the explicit correlation between the graph anonymity and the attribute information. We also validate our analysis through numerical and real world data-based evaluations and the results indicate that the non-PII can also lead to significant anonymity loss; and (ii) according to our theoretical analysis, we propose a new de-Anonymization framework for SAG data, namely De-SAG, which takes into account both the graph structure and the attribute information to the best of our knowledge. By extensive experiments, we demonstrate that De-SAG can significantly improve the performance of state-of-The-Art graph de-Anonymization attacks. Our attribute-based anonymity analysis and de-Anonymization framework are expected to provide data owners and researchers a more complete understanding on the privacy vulnerability of graph data, and thus shed light on future graph anonymization and de-Anonymization research.
AB - In this paper, we study the impacts of non-Personal Identifiable Information (non-PII) on the privacy of graph data with attribute information (e.g., social networks data with users' profiles (attributes)), namely Structure-Attribute Graph (SAG) data, both theoretically and empirically. Our main contributions are two-fold: (i) we conduct the first attribute-based anonymity analysis for SAG data under both preliminary and general models. By careful quantification, we obtain the explicit correlation between the graph anonymity and the attribute information. We also validate our analysis through numerical and real world data-based evaluations and the results indicate that the non-PII can also lead to significant anonymity loss; and (ii) according to our theoretical analysis, we propose a new de-Anonymization framework for SAG data, namely De-SAG, which takes into account both the graph structure and the attribute information to the best of our knowledge. By extensive experiments, we demonstrate that De-SAG can significantly improve the performance of state-of-The-Art graph de-Anonymization attacks. Our attribute-based anonymity analysis and de-Anonymization framework are expected to provide data owners and researchers a more complete understanding on the privacy vulnerability of graph data, and thus shed light on future graph anonymization and de-Anonymization research.
UR - http://www.scopus.com/inward/record.url?scp=85068901447&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85068901447&partnerID=8YFLogxK
U2 - 10.1109/TDSC.2017.2712150
DO - 10.1109/TDSC.2017.2712150
M3 - Article
AN - SCOPUS:85068901447
SN - 1545-5971
VL - 16
SP - 594
EP - 607
JO - IEEE Transactions on Dependable and Secure Computing
JF - IEEE Transactions on Dependable and Secure Computing
IS - 4
M1 - 7938634
ER -