Abstract
The decentralized stochastic multi-player multi-armed bandit (MP-MAB) problem, where the collision information is not available to the players, is studied in this paper. Building on the seminal work of Boursier and Perchet (2019), we propose error correction synchronization involving communication (EC-SIC), whose regret is shown to approach that of the centralized stochastic MP-MAB with collision information. By recognizing that the communication phase without collision information corresponds to the Z-channel model in information theory, the proposed EC-SIC algorithm applies optimal error correction coding for the communication of reward statistics. A fixed message length, as opposed to the logarithmically growing one in Boursier and Perchet (2019), also plays a crucial role in controlling the communication loss. Experiments with practical Z-channel codes, such as repetition code, flip code and modified Hamming code, demonstrate the superiority of EC-SIC in both synthetic and real-world datasets.
Original language | English (US) |
---|---|
Pages (from-to) | 1519-1528 |
Number of pages | 10 |
Journal | Proceedings of Machine Learning Research |
Volume | 108 |
State | Published - 2020 |
Event | 23rd International Conference on Artificial Intelligence and Statistics, AISTATS 2020 - Virtual, Online Duration: Aug 26 2020 → Aug 28 2020 |
All Science Journal Classification (ASJC) codes
- Artificial Intelligence
- Software
- Control and Systems Engineering
- Statistics and Probability