TY - JOUR
T1 - Deciphering upper respiratory tract microbiota complexity in healthy calves and calves that develop respiratory disease using shotgun metagenomics
AU - Gaeta, Natália C.
AU - Lima, Svetlana F.
AU - Teixeira, Andre G.
AU - Ganda, Erika K.
AU - Oikonomou, Georgios
AU - Gregory, Lilian
AU - Bicalho, Rodrigo C.
N1 - Publisher Copyright:
© 2017 American Dairy Science Association
PY - 2017/2/1
Y1 - 2017/2/1
N2 - Bovine respiratory disease (BRD) is a multifactorial disorder responsible for severe economic losses in dairy and feedlot herds. Advances in next-generation sequencing mean that microbial communities in clinical samples, including non-culturable bacteria, can be characterized. Our aim was to evaluate the microbiota of the upper respiratory tract of healthy calves and calves with BRD using whole-genome sequencing (shotgun metagenomics). We performed deep nasopharyngeal swabs on 16 Holstein heifer calves (10 healthy and 6 diagnosed with BRD during the study) at 14 and 28 d of life in 1 dairy herd near Ithaca, New York. Total DNA was extracted, and whole-genome sequencing was performed using the MiSeq Illumina platform (Illumina Inc., San Diego, CA). Samples included 5 predominant phyla: Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, and Tenericutes. At the genus level, we observed differences between groups for Pseudomonas spp. At the species level, Mannheimia haemolytica was the most abundant bacterium detected. We detected significant differences between groups of calves in the relative abundance of Pseudomonas fluorescens. Pasteurella multocida was among the 20 most abundant species, and Moraxella catarrhalis, commonly associated with pneumonia in humans, was detected in all groups. Analysis of resistance to antibiotics and compounds profiling revealed differences in cobalt-zinc-cadmium resistance. Further research to elucidate the role of Moraxella catarrhalis in BRD is warranted. Genes that were resistant to cobalt-zinc-cadmium, observed mostly in calves with BRD, might be associated with difficulties in antibiotic treatment.
AB - Bovine respiratory disease (BRD) is a multifactorial disorder responsible for severe economic losses in dairy and feedlot herds. Advances in next-generation sequencing mean that microbial communities in clinical samples, including non-culturable bacteria, can be characterized. Our aim was to evaluate the microbiota of the upper respiratory tract of healthy calves and calves with BRD using whole-genome sequencing (shotgun metagenomics). We performed deep nasopharyngeal swabs on 16 Holstein heifer calves (10 healthy and 6 diagnosed with BRD during the study) at 14 and 28 d of life in 1 dairy herd near Ithaca, New York. Total DNA was extracted, and whole-genome sequencing was performed using the MiSeq Illumina platform (Illumina Inc., San Diego, CA). Samples included 5 predominant phyla: Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, and Tenericutes. At the genus level, we observed differences between groups for Pseudomonas spp. At the species level, Mannheimia haemolytica was the most abundant bacterium detected. We detected significant differences between groups of calves in the relative abundance of Pseudomonas fluorescens. Pasteurella multocida was among the 20 most abundant species, and Moraxella catarrhalis, commonly associated with pneumonia in humans, was detected in all groups. Analysis of resistance to antibiotics and compounds profiling revealed differences in cobalt-zinc-cadmium resistance. Further research to elucidate the role of Moraxella catarrhalis in BRD is warranted. Genes that were resistant to cobalt-zinc-cadmium, observed mostly in calves with BRD, might be associated with difficulties in antibiotic treatment.
UR - http://www.scopus.com/inward/record.url?scp=85008423079&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85008423079&partnerID=8YFLogxK
U2 - 10.3168/jds.2016-11522
DO - 10.3168/jds.2016-11522
M3 - Article
C2 - 27988122
AN - SCOPUS:85008423079
SN - 0022-0302
VL - 100
SP - 1445
EP - 1458
JO - Journal of dairy science
JF - Journal of dairy science
IS - 2
ER -