TY - GEN
T1 - Decision Time
T2 - 5th ACM Conference on Fairness, Accountability, and Transparency, FAccT 2022
AU - Susser, Daniel
N1 - Publisher Copyright:
© 2022 ACM.
PY - 2022/6/21
Y1 - 2022/6/21
N2 - Existing discussions about automated decision-making focus primarily on its inputs and outputs, raising questions about data collection and privacy on one hand and accuracy and fairness on the other. Less attention has been devoted to critically examining the temporality of decision-making processes - the speed at which automated decisions are reached. In this paper, I identify four dimensions of algorithmic speed that merit closer analysis. Duration (how much time it takes to reach a judgment), timing (when automated systems intervene in the activity being evaluated), frequency (how often evaluations are performed), and lived time (the human experience of algorithmic speed) are interrelated, but distinct, features of automated decision-making. Choices about the temporal structure of automated decision-making systems have normative implications, which I describe in terms of "disruption, ""displacement, ""re-calibration, "and "temporal fairness, "with values such as accuracy, fairness, accountability, and legitimacy hanging in the balance. As computational tools are increasingly tasked with making judgments about human activities and practices, the designers of decision-making systems will have to reckon, I argue, with when - and how fast - judgments ought to be rendered. Though computers are capable of reaching decisions at incredible speeds, failing to account for the temporality of automated decision-making risks misapprehending the costs and benefits automation promises.
AB - Existing discussions about automated decision-making focus primarily on its inputs and outputs, raising questions about data collection and privacy on one hand and accuracy and fairness on the other. Less attention has been devoted to critically examining the temporality of decision-making processes - the speed at which automated decisions are reached. In this paper, I identify four dimensions of algorithmic speed that merit closer analysis. Duration (how much time it takes to reach a judgment), timing (when automated systems intervene in the activity being evaluated), frequency (how often evaluations are performed), and lived time (the human experience of algorithmic speed) are interrelated, but distinct, features of automated decision-making. Choices about the temporal structure of automated decision-making systems have normative implications, which I describe in terms of "disruption, ""displacement, ""re-calibration, "and "temporal fairness, "with values such as accuracy, fairness, accountability, and legitimacy hanging in the balance. As computational tools are increasingly tasked with making judgments about human activities and practices, the designers of decision-making systems will have to reckon, I argue, with when - and how fast - judgments ought to be rendered. Though computers are capable of reaching decisions at incredible speeds, failing to account for the temporality of automated decision-making risks misapprehending the costs and benefits automation promises.
UR - http://www.scopus.com/inward/record.url?scp=85133027937&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85133027937&partnerID=8YFLogxK
U2 - 10.1145/3531146.3533198
DO - 10.1145/3531146.3533198
M3 - Conference contribution
AN - SCOPUS:85133027937
T3 - ACM International Conference Proceeding Series
SP - 1410
EP - 1420
BT - Proceedings of 2022 5th ACM Conference on Fairness, Accountability, and Transparency, FAccT 2022
PB - Association for Computing Machinery
Y2 - 21 June 2022 through 24 June 2022
ER -