Decomposition and activation of Pt-dendrimer nanocomposites on a silica support

D. Samuel Deutsch, Gwendoline Lafaye, Dongxia Liu, Bert Chandler, Christopher T. Williams, Michael D. Amiridis

Research output: Contribution to journalArticlepeer-review

71 Scopus citations

Abstract

Zero valent platinum nanoparticles were stabilized in solution by the use of poly(amido)amine dendrimers and were subsequently deposited onto a porous silica support. The resulting materials were subjected to various thermal treatments in oxidizing, reducing, and inert environments, in order to remove the surrounding polymer and expose the Pt metal sites to gas phase reagents. The materials were characterized at several different stages during this process via Fourier-Transform Infrared (FTIR) spectroscopy and Transmission Electron Microscopy (TEM). The results suggest that the dendrimer decomposition occurs at its mono-substituted amide groups and begins at relatively low temperatures (∼50 °C). The presence of oxygen in the gas phase and the Pt particles in the Pt-dendrimer nanocomposite accelerate this process. Oxidation at 425 °C was the most successful temperature for removing the dendrimer fragments from the Pt surface, rendering the Pt sites most accessible for carbon monoxide adsorption. Limited sintering of the Pt particles is observed under these conditions, as well as during subsequent reduction steps, necessary to yield the metallic form of Pt.

Original languageEnglish (US)
Pages (from-to)139-143
Number of pages5
JournalCatalysis Letters
Volume97
Issue number3-4
DOIs
StatePublished - Sep 2004

All Science Journal Classification (ASJC) codes

  • Catalysis
  • General Chemistry

Fingerprint

Dive into the research topics of 'Decomposition and activation of Pt-dendrimer nanocomposites on a silica support'. Together they form a unique fingerprint.

Cite this