Decomposition of congruences involving a map Φ

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Congruences of Ankeny-Artin-Chowla type modulo p2 for a cyclic subfield K of prime conductor p were derived by Jakubec and expressed in terms of a technically defined map Φ. Later, Jakubec and Lassak found a decomposition of the map Φ modulo p2 and simplified the formulation of these congruences. A corresponding decomposition of the map Φ modulo p3 was obtained in [MARKO, F.: Towards Ankeny-Artin-Chowla type congruence modulo p3, Ann. Math. Sil. 20 (2006), 31-55]. That technical step was important for the formulation of congruences of Ankeny-Artin-Chowla type modulo p3. This paper will show how to produce an analogous decomposition of the map Φ modulo an arbitrary power pn which would allow a description of analogous congruences modulo pn.

Original languageEnglish (US)
Pages (from-to)793-800
Number of pages8
JournalMathematica Slovaca
Volume60
Issue number6
DOIs
StatePublished - Dec 2010

All Science Journal Classification (ASJC) codes

  • General Mathematics

Fingerprint

Dive into the research topics of 'Decomposition of congruences involving a map Φ'. Together they form a unique fingerprint.

Cite this