Abstract
Congruences of Ankeny-Artin-Chowla type modulo p2 for a cyclic subfield K of prime conductor p were derived by Jakubec and expressed in terms of a technically defined map Φ. Later, Jakubec and Lassak found a decomposition of the map Φ modulo p2 and simplified the formulation of these congruences. A corresponding decomposition of the map Φ modulo p3 was obtained in [MARKO, F.: Towards Ankeny-Artin-Chowla type congruence modulo p3, Ann. Math. Sil. 20 (2006), 31-55]. That technical step was important for the formulation of congruences of Ankeny-Artin-Chowla type modulo p3. This paper will show how to produce an analogous decomposition of the map Φ modulo an arbitrary power pn which would allow a description of analogous congruences modulo pn.
Original language | English (US) |
---|---|
Pages (from-to) | 793-800 |
Number of pages | 8 |
Journal | Mathematica Slovaca |
Volume | 60 |
Issue number | 6 |
DOIs | |
State | Published - Dec 2010 |
All Science Journal Classification (ASJC) codes
- General Mathematics