Deep Image Super Resolution via Natural Image Priors

Hojjat S. Mousavi, Tiantong Guo, Vishal Monga

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

Single image super-resolution (SR) via deep learning has recently gained significant attention in the literature. Convolutional neural networks (CNNs) are typically learned to represent the mapping between low-resolution (LR) and high-resolution (HR) images/patches with the help of training examples. Most existing deep networks for SR produce high quality results when training data is abundant. However, their performance degrades sharply when training is limited. We propose to regularize deep structures with prior knowledge about the images so that they can capture more structural information from the same limited data. In particular, we incorporate in a tractable fashion within the CNN framework, natural image priors which have shown to have much recent success in imaging and vision inverse problems. Experimental results show that the proposed deep network with natural image priors is particularly effective in training starved regimes.

Original languageEnglish (US)
Title of host publication2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1483-1487
Number of pages5
ISBN (Print)9781538646588
DOIs
StatePublished - Sep 10 2018
Event2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Calgary, Canada
Duration: Apr 15 2018Apr 20 2018

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2018-April
ISSN (Print)1520-6149

Other

Other2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018
Country/TerritoryCanada
CityCalgary
Period4/15/184/20/18

All Science Journal Classification (ASJC) codes

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Deep Image Super Resolution via Natural Image Priors'. Together they form a unique fingerprint.

Cite this