Abstract
The mechanism of self-diffusion in calcium aluminosilicate glasses is investigated at the atomistic level using molecular dynamics (MD) simulations. We study nine glass compositions having the fixed ratio R = [CaO]/[Al 2O3] = 1 and the concentration of SiO2 varied from 11.8 to 76.5 mol%. The diffusion coefficient is calculated for each composition at different temperatures from 300 to 6000 K in steps of 300 K. The self-diffusivities of the various elements are found to be close to each other in magnitude, signifying the cooperative nature of the atomic movement. Network "defects" such as miscoordinated cations, non-bridging oxygen, and oxygen triclusters are also studied as a function of temperature and composition. We find that the behavior of self-diffusion correlates well with the concentration of network defects. A model of self-diffusion in calcium aluminosilicate glasses is proposed where diffusion is considered as a defect-mediated process resulting from bond-switching reactions at high temperature.
Original language | English (US) |
---|---|
Pages (from-to) | 1780-1786 |
Number of pages | 7 |
Journal | Journal of Non-Crystalline Solids |
Volume | 357 |
Issue number | 7 |
DOIs | |
State | Published - Apr 1 2011 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Condensed Matter Physics
- Materials Chemistry