Deformation behaviors in light of dislocation core characteristics with respect to the compositional-dependent misfit potentials of aluminum alloys

Jinglian Du, Yu Liu, Zilin Zhang, Shun Li Shang, Hao Li, Zi Kui Liu, Feng Liu

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Dislocation core dominates dislocation mobility and mechanical properties of crystalline solids. To date, a complete landscape for describing dislocation with narrow core in metals like aluminum (Al) remains elusive, and thus deformation mechanisms of Al alloys are still unclear. This work investigates the dislocation core structure and deformation behaviors of Al alloyed with solutes X (X = Mg, Si, Cu, Zn, and Fe) within the framework of semi-discrete variational theory combined with first-principles calculations. Depending on the dislocation core characteristics, the deformation modes of Al alloys are governed by the compositional-dependent misfit potentials. Except for Fe, all other solutes in Al decrease the intrinsic SF energy, with considerable effects being Mg and Si. The deformation tends to occur via cross-slip of dislocations in Al alloyed with Mg, whereas Si additions can benefit to deform via emission of partial dislocations. Our investigation offers theoretical guidance for choosing solutes favorable to mechanical performances of Al alloys.

Original languageEnglish (US)
Pages (from-to)4366-4377
Number of pages12
JournalJournal of Materials Research and Technology
Volume27
DOIs
StatePublished - Nov 1 2023

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Biomaterials
  • Surfaces, Coatings and Films
  • Metals and Alloys

Cite this