Delayed treatment with a small pigment epithelium derived factor (PEDF) peptide prevents the progression of diabetic renal injury

Alaa S. Awad, Hanning You, Ting Gao, Anzor Gvritishvili, Timothy K. Cooper, Joyce Tombran-Tink

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Our recent publication showed that a small bioactive pigment epithelium derived factor (PEDF) peptide (P78-PEDF) prevents the development of diabetic nephropathy (DN). However, its effects on the progression of established DN were not clear. Therefore, the purpose of this study was to determine the effect of P78-PEDF in the progression of DN and to compare the effects of P78-PEDF and an ACE inhibitor (ACEi), a standard of care in DN. Experiments were conducted in Ins2Akita mice treated with P78-PEDF or captopril starting at 6 wks of age for 12 wks (early treatment) or starting at 12 wks of age for 6 wks (late treatment). We first established the optimal dose of the P78-PEDF peptide to ameliorate DN in Ins2Akita mouse for a 6 wk study period and found that the peptide was effective at 0.1-0.5 μg/g/day. We next showed that early or late treatment with P78-PEDF resulted in protection from DN as indicated by reduced albuminuria, kidney macrophage recruitment, histological changes, inflammatory cytokines and fibrotic markers (kidney TNF-α, fibronectin, VEGFA and EGFR), and restored nephrin expression compared with vehicle-Treated Ins2Akita mice. Interestingly, only early but not late treatment with captopril was as effective as P78-PEDF in reducing most DN complications, despite its lack of effect on nephrin, VEGFA and EGFR expression. These findings highlight the importance of P78-PEDF peptide as a potential therapeutic modality in both the development and progression of diabetic renal injury.

Original languageEnglish (US)
Article numbere0133777
JournalPloS one
Volume10
Issue number7
DOIs
StatePublished - Jul 24 2015

All Science Journal Classification (ASJC) codes

  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences
  • General

Fingerprint

Dive into the research topics of 'Delayed treatment with a small pigment epithelium derived factor (PEDF) peptide prevents the progression of diabetic renal injury'. Together they form a unique fingerprint.

Cite this