Deletion of caveolin-1 protects hyperoxia-induced apoptosis via survivin-mediated pathways

Meng Zhang, Ling Lin, Seon Jin Lee, Li Mo, Jiaofei Cao, Emeka Ifedigbo, Yang Jin

Research output: Contribution to journalArticlepeer-review

39 Scopus citations


Hyperoxia-induced lung injury is an established model that mimics human acute respiratory distress syndrome. Cell death is a prominent feature in lungs following prolonged hyperoxia. Caveolae are omega-shaped invaginations of the plasma membrane. Caveolin-1 (cav-1), a 22-kDa transmembrane scaffolding protein, is the principal structural component of caveolae. We have recently shown that deletion of cav-1 (cav-1-/-) protected against hyperoxia-induced cell death and lung injury both in vitro and in vivo; however, the mechanisms remain unclear. Survivin, a member of the inhibitor of apoptosis protein family, inhibits apoptosis in tumor cells. Although emerging evidence suggests that survivin is involved in wound healing, especially in vascular injuries, its role in hyperoxia-induced lung injury has not been investigated. Our current data demonstrated that hyperoxia induced apoptosis via suppressing survivin expression. Deletion of cav-1 abolished this suppression and subsequently protected against hyperoxia-induced apoptosis. Using "gain" and "loss" of function assays, we determined that survivin protected lung cells from hyperoxia-induced apoptosis via the inhibition of apoptosis executor caspase-3. Overexpression of survivin by deletion of cav-1 was regulated by Egr-1. Egr-1 functioned as a negative regulator of survivin expression. Deletion of cav-1 upregulated survivin via decreased Egr-1 binding of the survivin promoter region. Together, this study illustrates the effect of hyperoxia on survivin expression and the role of survivin in hyperoxia-induced apoptosis. We also demonstrate that deletion of cav-1 protects hyperoxia-induced apoptosis via modulation of survivin expression.

Original languageEnglish (US)
Pages (from-to)L945-L953
JournalAmerican Journal of Physiology - Lung Cellular and Molecular Physiology
Issue number5
StatePublished - Nov 2009

All Science Journal Classification (ASJC) codes

  • Physiology
  • Pulmonary and Respiratory Medicine
  • Physiology (medical)
  • Cell Biology


Dive into the research topics of 'Deletion of caveolin-1 protects hyperoxia-induced apoptosis via survivin-mediated pathways'. Together they form a unique fingerprint.

Cite this