DENDRITE SUPPRESSION and ENERGY DENSITY in METAL BATTERIES with ELECTROLYTE FLOW through PERFORATED ELECTRODES

Mihir Parekh, Christopher Rahn

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

Previous research shows that forced advection through porous lithium metal electrodes can eliminate dendrite growth in lithium metal batteries. In this paper, we study the effect of creeping electrolyte flow through perforated metal anodes on dendrite growth and energy density by using a 2D COMSOL Multiphysics model. The flowing electrolyte enhances plating inside the slot (2D model of pore) and reduces plating on the part of electrode directly facing the counter-electrode. This reduces the chances of short circuit via dendrite growth. Higher electrolyte velocity reduces the plating current density in the inter-slot gap and increases the amount of plating in the slot. Larger slot separation and thicker electrodes alleviate dendrite growth but lower the specific charge density. Wider slots enhance the possibility of short circuits and narrower slots may get plugged due to plating inside the hole. Thus, slot width, slot separation, and electrode thickness should be optimized to ensure high specific charge density and non-dendritic plating in the inter-slot gap.

Original languageEnglish (US)
Title of host publicationEnergy
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791884560
DOIs
StatePublished - 2020
EventASME 2020 International Mechanical Engineering Congress and Exposition, IMECE 2020 - Virtual, Online
Duration: Nov 16 2020Nov 19 2020

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume8

Conference

ConferenceASME 2020 International Mechanical Engineering Congress and Exposition, IMECE 2020
CityVirtual, Online
Period11/16/2011/19/20

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'DENDRITE SUPPRESSION and ENERGY DENSITY in METAL BATTERIES with ELECTROLYTE FLOW through PERFORATED ELECTRODES'. Together they form a unique fingerprint.

Cite this