TY - JOUR
T1 - Dense cores in galaxies out to z = 2.5 in SDSS, UltraVISTA, and the five 3D-HST/candels fields
AU - Van Dokkum, Pieter G.
AU - Bezanson, Rachel
AU - Van Der Wel, Arjen
AU - Nelson, Erica June
AU - Momcheva, Ivelina
AU - Skelton, Rosalind E.
AU - Whitaker, Katherine E.
AU - Brammer, Gabriel
AU - Conroy, Charlie
AU - Schreiber, Natascha M.Förster
AU - Fumagalli, Mattia
AU - Kriek, Mariska
AU - Labbé, Ivo
AU - Leja, Joel
AU - Marchesini, Danilo
AU - Muzzin, Adam
AU - Oesch, Pascal
AU - Wuyts, Stijn
PY - 2014/8/10
Y1 - 2014/8/10
N2 - The dense interiors of massive galaxies are among the most intriguing environments in the universe. In this paper,we ask when these dense cores were formed and determine how galaxies gradually assembled around them. We select galaxies that have a stellar mass >3 × 1010 M inside r = 1 kpc out to z = 2.5, using the 3D-HST survey and data at low redshift. Remarkably, the number density of galaxies with dense cores appears to have decreased from z = 2.5 to the present. This decrease is probably mostly due to stellar mass loss and the resulting adiabatic expansion, with some contribution from merging. We infer that dense cores were mostly formed at z > 2.5, consistent with their largely quiescent stellar populations. While the cores appear to form early, the galaxies in which they reside show strong evolution: their total masses increase by a factor of 2-3 from z = 2.5 to z = 0 and their effective radii increase by a factor of 5-6. As a result, the contribution of dense cores to the total mass of the galaxies in which they reside decreases from 50% at z = 2.5 to 15% at z = 0. Because of their early formation, the contribution of dense cores to the total stellar mass budget of the universe is a strong function of redshift. The stars in cores with M 1 kpc > 3 × 1010 M ̇make up 0.1% of the stellar mass density of the universe today but 10%-20% at z 2, depending on their initial mass function. The formation of these cores required the conversion of 1011 M of gas into stars within 1 kpc, while preventing significant star formation at larger radii.
AB - The dense interiors of massive galaxies are among the most intriguing environments in the universe. In this paper,we ask when these dense cores were formed and determine how galaxies gradually assembled around them. We select galaxies that have a stellar mass >3 × 1010 M inside r = 1 kpc out to z = 2.5, using the 3D-HST survey and data at low redshift. Remarkably, the number density of galaxies with dense cores appears to have decreased from z = 2.5 to the present. This decrease is probably mostly due to stellar mass loss and the resulting adiabatic expansion, with some contribution from merging. We infer that dense cores were mostly formed at z > 2.5, consistent with their largely quiescent stellar populations. While the cores appear to form early, the galaxies in which they reside show strong evolution: their total masses increase by a factor of 2-3 from z = 2.5 to z = 0 and their effective radii increase by a factor of 5-6. As a result, the contribution of dense cores to the total mass of the galaxies in which they reside decreases from 50% at z = 2.5 to 15% at z = 0. Because of their early formation, the contribution of dense cores to the total stellar mass budget of the universe is a strong function of redshift. The stars in cores with M 1 kpc > 3 × 1010 M ̇make up 0.1% of the stellar mass density of the universe today but 10%-20% at z 2, depending on their initial mass function. The formation of these cores required the conversion of 1011 M of gas into stars within 1 kpc, while preventing significant star formation at larger radii.
UR - http://www.scopus.com/inward/record.url?scp=84905280894&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84905280894&partnerID=8YFLogxK
U2 - 10.1088/0004-637X/791/1/45
DO - 10.1088/0004-637X/791/1/45
M3 - Article
AN - SCOPUS:84905280894
SN - 0004-637X
VL - 791
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 45
ER -