TY - JOUR
T1 - Density functional theory study of sulfur tolerance of CO adsorption and dissociation on Rh-Ni binary metals
AU - Lee, Kyungtae
AU - Song, Chunshan
AU - Janik, Michael J.
N1 - Funding Information:
The authors gratefully acknowledge the support of this work by the US Department of Energy National Energy Technology Laboratory under grant DE-FC26-08NT0004396 .
PY - 2010/12/1
Y1 - 2010/12/1
N2 - The effect of Ni addition to improve the sulfur tolerance of a Rh catalyst for CO dissociation was studied using density functional theory (DFT) methods. Adsorption and dissociation were considered over the (1 1 1) surfaces of binary Rh1Ni2 and Rh2Ni1 metals with comparison to pure Rh and Ni surfaces. Sulfur adsorption on the Rh 1Ni2(1 1 1) surface is 0.21 eV more endothermic than on the Rh(1 1 1) surface, suggesting that a Rh1Ni2 bimetallic catalyst has a higher sulfur tolerance than pure Rh catalysts due to a lower surface coverage of the sulfur poison. To compare catalytic activity in the presence of adsorbed sulfur, the CO dissociation rates over the binary and pure metals were calculated with 1/9 sulfur coverage. CO dissociation is fastest on the pure Rh surface under sulfur-free conditions, whereas among sulfur poisoned surfaces, the Rh1Ni2 surface shows the fastest CO dissociation rate. The CO dissociation barrier on Rh1Ni2 is destabilized less by a S coadsorbate than for the other metals. The addition of Ni atoms to a Rh catalyst improves the sulfur tolerance of the catalyst for CO dissociation by minimizing the repulsion between the adsorbed S atom and the CO dissociation transition state, as evidenced through a projected density of states analysis. The Rh1Ni2(2 2 1) stepped surface also shows a lower activation barrier and higher CO dissociation rate in the presence of sulfur than the Rh(2 2 1) stepped surface.
AB - The effect of Ni addition to improve the sulfur tolerance of a Rh catalyst for CO dissociation was studied using density functional theory (DFT) methods. Adsorption and dissociation were considered over the (1 1 1) surfaces of binary Rh1Ni2 and Rh2Ni1 metals with comparison to pure Rh and Ni surfaces. Sulfur adsorption on the Rh 1Ni2(1 1 1) surface is 0.21 eV more endothermic than on the Rh(1 1 1) surface, suggesting that a Rh1Ni2 bimetallic catalyst has a higher sulfur tolerance than pure Rh catalysts due to a lower surface coverage of the sulfur poison. To compare catalytic activity in the presence of adsorbed sulfur, the CO dissociation rates over the binary and pure metals were calculated with 1/9 sulfur coverage. CO dissociation is fastest on the pure Rh surface under sulfur-free conditions, whereas among sulfur poisoned surfaces, the Rh1Ni2 surface shows the fastest CO dissociation rate. The CO dissociation barrier on Rh1Ni2 is destabilized less by a S coadsorbate than for the other metals. The addition of Ni atoms to a Rh catalyst improves the sulfur tolerance of the catalyst for CO dissociation by minimizing the repulsion between the adsorbed S atom and the CO dissociation transition state, as evidenced through a projected density of states analysis. The Rh1Ni2(2 2 1) stepped surface also shows a lower activation barrier and higher CO dissociation rate in the presence of sulfur than the Rh(2 2 1) stepped surface.
UR - http://www.scopus.com/inward/record.url?scp=78649335518&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78649335518&partnerID=8YFLogxK
U2 - 10.1016/j.apcata.2010.09.015
DO - 10.1016/j.apcata.2010.09.015
M3 - Article
AN - SCOPUS:78649335518
SN - 0926-860X
VL - 389
SP - 122
EP - 130
JO - Applied Catalysis A: General
JF - Applied Catalysis A: General
IS - 1-2
ER -