Density Wave Probes Cuprate Quantum Phase Transition

Tatiana A. Webb, Michael C. Boyer, Yi Yin, Debanjan Chowdhury, Yang He, Takeshi Kondo, T. Takeuchi, H. Ikuta, Eric W. Hudson, Jennifer E. Hoffman, Mohammad H. Hamidian

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

In cuprates, the strong correlations in proximity to the antiferromagnetic Mott insulating state give rise to an array of unconventional phenomena beyond high-temperature superconductivity. Developing a complete description of the ground-state evolution is crucial to decoding the complex phase diagram. Here we use the structure of broken translational symmetry, namely, d-form factor charge modulations in (Bi,Pb)2(Sr,La)2CuO6+δ as a probe of the ground-state reorganization that occurs at the transition from truncated Fermi arcs to a large Fermi surface. We use real space imaging of nanoscale electronic inhomogeneity as a tool to access a range of dopings within each sample, and we definitively validate the spectral gap Δ as a proxy for local hole doping. From the Δ dependence of the charge modulation wave vector, we discover a commensurate-to-incommensurate transition that is coincident with the Fermi-surface transition from arcs to large hole pocket, demonstrating the qualitatively distinct nature of the electronic correlations governing the two sides of this quantum phase transition. Furthermore, the doping dependence of the incommensurate wave vector on the overdoped side is at odds with a simple Fermi-surface-driven instability.

Original languageEnglish (US)
Article number021021
JournalPhysical Review X
Volume9
Issue number2
DOIs
StatePublished - May 1 2019

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Density Wave Probes Cuprate Quantum Phase Transition'. Together they form a unique fingerprint.

Cite this