Depletion of a highly motional residue affects formation of the Michaelis complex for Escherichia coli dihydrofolate reductase

Grover Paul Miller, Stephen J. Benkovic

Research output: Contribution to journalArticlepeer-review

65 Scopus citations


Analysis of the dihydrofolate reductase (DHFR) complex with folate by two-dimensional heteronuclear (1H-15N) nuclear magnetic relaxation revealed that isolated residues exhibit diverse backbone fluctuations on the nanosecond to picosecond time scale [Epstein, D. M., Benkovic, S. J., and Wright, P. E. (1995) Biochemistry 34, 11037-11048]. These dynamical features may be significant in forming the Michaelis complex. Of these residues, glycine 121 displays large-amplitude backbone motions on the nanosecond time scale. This amino acid, strictly conserved for prokaryotic DHFRs, is located at the center of the βF-βG loop. To investigate the catalytic importance of this residue, we report the effects of Gly121 deletion and glycine insertion into the modified βF-βG loop. Relative to wild type, deletion of Gly 121 dramatically decreases the rate of hydride transfer 550-fold and the strength of cofactor binding 20-fold for NADPH and 7-fold for NADP+. Furthermore, ΔG121 DHFR requires conformational changes dependent on the initial binary complex to attain the Michaelis complex poised for hydride transfer. Surprisingly, the insertion mutants displayed a significant decrease in both substrate and cofactor binding. The introduction of glycine into the modified βF-βG loop, however, generally eliminated conformational changes required by AG121 DHFR to attain the Michaelis complex. Taken together, these results suggest that the catalytic role for the βF-βG loop includes formation of liganded complexes and proper orientation of substrate and cofactor. Through a transient interaction with the Met20 loop, alterations of the βF-βG loop can orchestrate proximal and distal effects on binding and catalysis that implicate a variety of enzyme conformations participating in the catalytic cycle.

Original languageEnglish (US)
Pages (from-to)6327-6335
Number of pages9
Issue number18
StatePublished - May 5 1998

All Science Journal Classification (ASJC) codes

  • Biochemistry


Dive into the research topics of 'Depletion of a highly motional residue affects formation of the Michaelis complex for Escherichia coli dihydrofolate reductase'. Together they form a unique fingerprint.

Cite this