TY - JOUR
T1 - Depth profiling of boron in ultra-shallow junction devices using time-of-flight neutron depth profiling (TOF-NDP)
AU - Çetiner, Sacit M.
AU - Ünlü, Kenan
PY - 2007/8/21
Y1 - 2007/8/21
N2 - In conventional neutron depth profiling (NDP), residual energies of particles are measured directly by using a semiconductor detector. The measured depth resolution is a function of the material composition as well as a function of the energy resolution of the detector and precision of the measurement electronics. The uncertainty from the substrate is inevitable. However, for relatively thin layers, the predominant uncertainty factor in depth resolution is the metallic layer in front of the semiconductor-charged particle detector. The effect of the layer introduces additional straggling to the particle. Time-of-flight neutron depth profiling (TOF-NDP) is presented to eliminate the need to use semiconductor detectors. Particle energy can be determined from the particle arrival time. Energy resolution improvement achieved with TOF-NDP makes it possible to obtain concentration vs. depth profile of boron in ultra-shallow junction devices.
AB - In conventional neutron depth profiling (NDP), residual energies of particles are measured directly by using a semiconductor detector. The measured depth resolution is a function of the material composition as well as a function of the energy resolution of the detector and precision of the measurement electronics. The uncertainty from the substrate is inevitable. However, for relatively thin layers, the predominant uncertainty factor in depth resolution is the metallic layer in front of the semiconductor-charged particle detector. The effect of the layer introduces additional straggling to the particle. Time-of-flight neutron depth profiling (TOF-NDP) is presented to eliminate the need to use semiconductor detectors. Particle energy can be determined from the particle arrival time. Energy resolution improvement achieved with TOF-NDP makes it possible to obtain concentration vs. depth profile of boron in ultra-shallow junction devices.
UR - http://www.scopus.com/inward/record.url?scp=34547671045&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34547671045&partnerID=8YFLogxK
U2 - 10.1016/j.nima.2007.04.027
DO - 10.1016/j.nima.2007.04.027
M3 - Article
AN - SCOPUS:34547671045
SN - 0168-9002
VL - 579
SP - 148
EP - 152
JO - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
JF - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
IS - 1
ER -