TY - GEN
T1 - Deriving Entity-Specific Embeddings From Multi-Entity Sequences
AU - Heaton, Connor
AU - Mitra, Prasenjit
N1 - Publisher Copyright:
© 2024 ELRA Language Resource Association: CC BY-NC 4.0.
PY - 2024
Y1 - 2024
N2 - Underpinning much of the recent progress in deep learning is the transformer architecture, which takes as input a sequence of embeddings E and emits an updated sequence of embeddings E′. A special [CLS] embedding is often included in this sequence, serving as a description of the sequence once processed and used as the basis for subsequent sequence-level tasks. The processed [CLS] embedding loses utility, however, when the model is presented with a multi-entity sequence and asked to perform an entity-specific task. When processing a multi-speaker dialogue, for example, the [CLS] embedding describes the entire dialogue, not any individual utterance/speaker. Existing methods toward entity-specific prediction involve redundant computation or post-processing outside of the transformer. We present a novel methodology for deriving entity-specific embeddings from a multi-entity sequence completely within the transformer, with a loose definition of entity amenable to many problem spaces. To show the generic applicability of our method, we apply it to widely different tasks: emotion recognition in conversation and player performance projection in baseball and show that it can be used to achieve SOTA in both. Code can be found at https://github.com/c-heat16/EntitySpecificEmbeddings.
AB - Underpinning much of the recent progress in deep learning is the transformer architecture, which takes as input a sequence of embeddings E and emits an updated sequence of embeddings E′. A special [CLS] embedding is often included in this sequence, serving as a description of the sequence once processed and used as the basis for subsequent sequence-level tasks. The processed [CLS] embedding loses utility, however, when the model is presented with a multi-entity sequence and asked to perform an entity-specific task. When processing a multi-speaker dialogue, for example, the [CLS] embedding describes the entire dialogue, not any individual utterance/speaker. Existing methods toward entity-specific prediction involve redundant computation or post-processing outside of the transformer. We present a novel methodology for deriving entity-specific embeddings from a multi-entity sequence completely within the transformer, with a loose definition of entity amenable to many problem spaces. To show the generic applicability of our method, we apply it to widely different tasks: emotion recognition in conversation and player performance projection in baseball and show that it can be used to achieve SOTA in both. Code can be found at https://github.com/c-heat16/EntitySpecificEmbeddings.
UR - http://www.scopus.com/inward/record.url?scp=85195931411&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85195931411&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85195931411
T3 - 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings
SP - 4675
EP - 4684
BT - 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings
A2 - Calzolari, Nicoletta
A2 - Kan, Min-Yen
A2 - Hoste, Veronique
A2 - Lenci, Alessandro
A2 - Sakti, Sakriani
A2 - Xue, Nianwen
PB - European Language Resources Association (ELRA)
T2 - Joint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024
Y2 - 20 May 2024 through 25 May 2024
ER -