TY - GEN
T1 - Deriving metamodels to relate machine learning quality to design repository characteristics in the context of additive manufacturing
AU - Williams, Glen
AU - Meisel, Nicholas A.
AU - Simpson, Timothy W.
AU - McComb, Christopher
N1 - Publisher Copyright:
© 2020 American Society of Mechanical Engineers (ASME). All rights reserved.
PY - 2020
Y1 - 2020
N2 - The widespread growth of additive manufacturing, a field with a complex informatic "digital thread", has helped fuel the creation of design repositories, where multiple users can upload distribute, and download a variety of candidate designs for a variety of situations. Additionally, advancements in additive manufacturing process development, design frameworks, and simulation are increasing what is possible to fabricate with AM, further growing the richness of such repositories. Machine learning offers new opportunities to combine these design repository components' rich geometric data with their associated process and performance data to train predictive models capable of automatically assessing build metrics related to AM part manufacturability. Although design repositories that can be used to train these machine learning constructs are expanding, our understanding of what makes a particular design repository useful as a machine learning training dataset is minimal. In this study we use a metamodel to predict the extent to which individual design repositories can train accurate convolutional neural networks. To facilitate the creation and refinement of this metamodel, we constructed a large artificial design repository, and subsequently split it into sub-repositories. We then analyzed metadata regarding the size, complexity, and diversity of the subrepositories for use as independent variables predicting accuracy and the required training computational effort for training convolutional neural networks. The networks each predict one of three additive manufacturing build metrics: (1) part mass, (2) support material mass, and (3) build time. Our results suggest that metamodels predicting the convolutional neural network coefficient of determination, as opposed to computational effort, were most accurate. Moreover, the size of a design repository, the average complexity of its constituent designs, and the average and spread of design spatial diversity were the best predictors of convolutional neural network accuracy.
AB - The widespread growth of additive manufacturing, a field with a complex informatic "digital thread", has helped fuel the creation of design repositories, where multiple users can upload distribute, and download a variety of candidate designs for a variety of situations. Additionally, advancements in additive manufacturing process development, design frameworks, and simulation are increasing what is possible to fabricate with AM, further growing the richness of such repositories. Machine learning offers new opportunities to combine these design repository components' rich geometric data with their associated process and performance data to train predictive models capable of automatically assessing build metrics related to AM part manufacturability. Although design repositories that can be used to train these machine learning constructs are expanding, our understanding of what makes a particular design repository useful as a machine learning training dataset is minimal. In this study we use a metamodel to predict the extent to which individual design repositories can train accurate convolutional neural networks. To facilitate the creation and refinement of this metamodel, we constructed a large artificial design repository, and subsequently split it into sub-repositories. We then analyzed metadata regarding the size, complexity, and diversity of the subrepositories for use as independent variables predicting accuracy and the required training computational effort for training convolutional neural networks. The networks each predict one of three additive manufacturing build metrics: (1) part mass, (2) support material mass, and (3) build time. Our results suggest that metamodels predicting the convolutional neural network coefficient of determination, as opposed to computational effort, were most accurate. Moreover, the size of a design repository, the average complexity of its constituent designs, and the average and spread of design spatial diversity were the best predictors of convolutional neural network accuracy.
UR - http://www.scopus.com/inward/record.url?scp=85096309337&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85096309337&partnerID=8YFLogxK
U2 - 10.1115/DETC2020-22518
DO - 10.1115/DETC2020-22518
M3 - Conference contribution
AN - SCOPUS:85096309337
T3 - Proceedings of the ASME Design Engineering Technical Conference
BT - 46th Design Automation Conference (DAC)
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2020
Y2 - 17 August 2020 through 19 August 2020
ER -