TY - GEN
T1 - Design and development of a battery internal short circuit testmachine
AU - DeLaney, Scott C.
AU - Burbules, Mary B.
AU - Garg, Mayank
AU - Hollinger, Adam S.
AU - Rahn, Christopher D.
N1 - Funding Information:
Funding for this project was provided by the Mechatronics Research Lab, Battery & Energy Storage Technology Center, and the Pennsylvania State University Research Experience for Undergraduates program.
Publisher Copyright:
Copyright © 2017 ASME.
PY - 2017
Y1 - 2017
N2 - The use of lithium-based batteries, due to their high energy density, has become popular for power sources in portable electronic devices. Safety concerns over lithium cell applications have arisen due to their lower abuse tolerance compared to standard battery designs. Internal short circuits present one of the more dangerous abuse situations since there is a great potential of thermal runaway leading to fire and explosion. Field failures and recalls associated with internal short circuits demonstrate the risks of lithium batteries. Understanding the response of lithium cells under internal short circuit conditions is of great importance to ensure the safe development of lithium battery application. In this work, an internal short circuit test machine was designed to conduct nail penetration tests of lithium chemistry cells. The test machine successfully provides the required force to allow for multi-cell penetration. The test machine also provides accurate control of the penetrating nail's position and velocity. This testing will support the development of models to simulate the mechanism of internal short circuits of lithium cells.
AB - The use of lithium-based batteries, due to their high energy density, has become popular for power sources in portable electronic devices. Safety concerns over lithium cell applications have arisen due to their lower abuse tolerance compared to standard battery designs. Internal short circuits present one of the more dangerous abuse situations since there is a great potential of thermal runaway leading to fire and explosion. Field failures and recalls associated with internal short circuits demonstrate the risks of lithium batteries. Understanding the response of lithium cells under internal short circuit conditions is of great importance to ensure the safe development of lithium battery application. In this work, an internal short circuit test machine was designed to conduct nail penetration tests of lithium chemistry cells. The test machine successfully provides the required force to allow for multi-cell penetration. The test machine also provides accurate control of the penetrating nail's position and velocity. This testing will support the development of models to simulate the mechanism of internal short circuits of lithium cells.
UR - http://www.scopus.com/inward/record.url?scp=85029371916&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85029371916&partnerID=8YFLogxK
U2 - 10.1115/ES2017-3407
DO - 10.1115/ES2017-3407
M3 - Conference contribution
AN - SCOPUS:85029371916
T3 - ASME 2017 11th International Conference on Energy Sustainability, ES 2017, collocated with the ASME 2017 Power Conference Joint with ICOPE 2017, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum
BT - ASME 2017 11th International Conference on Energy Sustainability, ES 2017, collocated with the ASME 2017 Power Conference Joint with ICOPE 2017, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum
PB - American Society of Mechanical Engineers
T2 - ASME 2017 11th International Conference on Energy Sustainability, ES 2017, collocated with the ASME 2017 Power Conference Joint with ICOPE 2017, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum
Y2 - 26 June 2017 through 30 June 2017
ER -