Design and Optimization of Radiation Pattern Reconfigurable Nanoloop Antennas

Ryan J. Chaky, Jogender Nagar, Douglas H. Werner, Arnold F. Mckinley, Mario F. Pantoja

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The loading of antennas greatly expands the design space by making otherwise challenging performance goals more easily realizable. It is demonstrated that the pairing of the analytical theory of loop antennas with a powerful global optimizer can achieve designs that offer significant radiation pattern shaping in both the RF and optical regimes.

Original languageEnglish (US)
Title of host publication2018 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting, APSURSI 2018 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages875-876
Number of pages2
ISBN (Electronic)9781538671023
DOIs
StatePublished - 2018
Event2018 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting, APSURSI 2018 - Boston, United States
Duration: Jul 8 2018Jul 13 2018

Publication series

Name2018 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting, APSURSI 2018 - Proceedings

Conference

Conference2018 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting, APSURSI 2018
Country/TerritoryUnited States
CityBoston
Period7/8/187/13/18

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Instrumentation
  • Radiation

Fingerprint

Dive into the research topics of 'Design and Optimization of Radiation Pattern Reconfigurable Nanoloop Antennas'. Together they form a unique fingerprint.

Cite this